
October 23, 2013

Contact Information:

info@biglever.com

www.biglever.com

+1-512-777-9552

Multistage Configuration Trees for

Managing Product Family Trees

Report#: 20131023

It is not unusual for commercial product line organizations to manufacture mil-

lions of product instances every year, in thousands of different “flavors”. The

scale and scope of diversity in product lines of this size can be high, creating

significant challenges to engineers implementing the product line, product mar-

keters defining the space of available products, and customers selecting from

available products. Companies often organize their products into a product fam-

ily tree to provide clarity about their product groupings and offerings, better

enabling their customers to effectively navigate among the huge number of of-

ferings and to efficiently converge on a suitable product instance.

This paper describes a 2nd Generation Product Line Engineering (2GPLE) fea-

ture modeling structure called a multistage configuration tree that supports the

engineering, deployment and maintenance of complex product family trees. Fea-

ture selections and downselections are incrementally staged throughout the

nodes in a product family tree. Feature decisions made at any node are inherited

by all descendants of that node, thereby defining a product family subtree.

1. Introduction

In successful commercial product line organizations, the number and diversity of
products deployed can grow to be extremely large, partially due to the efficiencies
made available from Systems and Software Product Line Engineering (PLE) tools and
methods. In market segments ranging from industrial pumps to automobiles, it is not
unusual for companies to manufacture millions of product instances every year, in
thousands of different “flavors”.

The extreme scale and scope of diversity in product lines of this size creates signifi-
cant challenges to engineers implementing the product line, product marketers defin-
ing the space of available products, and customers selecting from available products.
To provide order and clarity about their product groupings and offerings within this
type of complex product space, companies often organize their products into a prod-
uct family tree, thereby enabling their customers to effectively navigate among the
huge number of offerings and to efficiently converge on a suitable product instance.

For example, an automotive manufacturer might hierarchically structure their entire
product line portfolio with millions of instances into a family tree with 5 levels:

• Platforms. A platform is a family of vehicles of similar size and structure that can
be manufactured in the same assembly plant. Examples might be pickup trucks,
large sedans, and small coupes.

• Programs. A program is subfamily of vehicles within a single platform, known by
consumers as the “model” and often found in nameplate display on the back of the
vehicle .

• Regional programs. A regional program is a subfamily of vehicles within a single
program, manufactured for the legislative, geographic, climate, cultural, and mar-
keting characteristics of a particular country.

• Trim levels. A trim level is a subfamily of vehicles within a single regional pro-
gram, representing different tiers of capabilities, accessories, and associated cost.
Trim levels are marketed using terms such as base, standard, and luxury.

Copyright © 2013 BigLever Software, Inc. 1

Companies often organize

their products into a product

family tree to provide clarity

about their product groupings

and offerings. Multistage

configuration supports the

engineering, deployment and

maintenance of complex

product family trees.

This paper was presented
at the 17th International
Software Product Line

Conference (SPLC 2013).

mailto:info@biglever.com
mailto:info@biglever.com
http://www.biglever.com
http://www.biglever.com
Cathy Martin

Cathy Martin

Cathy Martin

Cathy Martin

Cathy Martin
2020

• Vehicle instances. A vehicle instance is a subfamily member within a single re-
gional program trim level. Characteristics of a vehicle instance are determined by
the consumer-selectable options available on a particular trim level.

In contrast to the way that the PLE community traditionally focuses on techniques for
selecting and solving for features on a particular product instance, product line or-
ganization with large family trees expend most of their effort determining which fea-
tures will not be available within a subfamily. As an engineering leader within one
such automotive manufacturing organization described it, “we are more focused on
identifying the features that we don’t want on a particular platform, program or trim
package, than we are on specifying the features we want configured on any particular
product instance.”

To address this need for managing the feature modeling structure within a product
family tree, we have designed, implemented and deployed into commercial practice a
technology and methodology referred to as multistage configuration trees in the
BigLever Software Gears 2GPLE tool and lifecycle framework[1][2]. Multistage con-
figuration trees extend the PLE concepts and constructs of featuring modeling[3] and
staged configuration[4] to support the engineering and deployment of systems and
software product line engineering assets for product lines with complex product fam-
ily trees[5].

In 2GPLE terminology, a feature model declares the full collection of feature choices
available in a product line and a feature profile defines the fully bound collection of
feature choices made for a particular product instance in the product line. In multi-
stage configuration trees, the feature model serves as the root of the tree and fully
bound feature profiles are found at the leaves of the tree. Partially bound feature pro-
files, where some feature decisions have been made or restricted and other feature
choices remain available, are present either as internal or leaf nodes of the tree.

One of the central properties of multistage configuration trees is that any connected
path from the root node to a leaf node must be a monotonically decreasing (i.e.,
monotonically not increasing) sequence in the space of available feature choices. That
is, children must honor the feature decisions made by their ancestors and may option-
ally decide to make additional feature decisions that further constrain the space of
available feature choices. The monotonically decreasing property of multistage con-
figuration trees assures that each node in a tree defines a subfamily, where all descen-
dants of a node inherit the feature decisions from that node and its ancestors.

The addition of multistage configuration trees into 2GPLE, in order to better manage
the engineering and deployment of an organization’s product family tree, introduces
new challenges and opportunities which are discussed throughout the remainder of
this paper. These include the use of partial profiles to perform partial configuration of
assets, managing the evolution of multistage configuration trees, recursive application
of multistage configuration trees in hierarchical product lines, and tool automation to
support and enforce monotonically decreasing feature spaces.

2. Multistage Configuration Trees

Multistage configuration trees1 comprises three kinds of models:

• Feature models are located only at the root of the tree. As with conventional
2GPLE, a feature model declares the full collection of feature choices available in
a product line.

• Feature profiles, or fully bound feature profiles, are located only at leaves of the
tree. Just like conventional 2GPLE, a feature profile defines the fully bound collec-
tion of feature choices made for a particular product instance in the product line.
Feature profiles never have children in a multistage configuration tree since no
further refinements or feature choices are possible.

Copyright © 2013 BigLever Software, Inc. 2

1 Patent pending

Cathy Martin
2020

• Partial profiles, or partially bound feature profiles, are found at internal nodes and
leaves of the tree. Partial profiles are a special kind of profile, where you can bind
some feature decisions (as in a conventional feature profile), partially restrict the
available choices some feature, and explicitly leave other feature choices unbound.

Note that the root feature model in a multistage configuration tree is a degenerate case
of a partial profile with no decisions made. A leaf feature profile is another degener-
ate case of a partial profile with all decisions made.

2.1.	 Partial Profiles

A partial profile is more than just a partially filled out feature profile. There are spe-
cial modeling constructs and semantics associated with the feature decisions that re-
main unbound.

In a conventional fully bound profile, there are two states for each feature decision,
undefined and defined. Undefined means that the modeler has not made a decision
about a feature, while defined means that the choice for a feature is fully defined.

For partial profiles, there is a third state possible for any feature, unbound. Unbound
means that the modeler has explicitly made their decision to leave this decision open,
so that other descendants in the multistage configuration tree can make their own –
possibly different in different subfamilies – decision about this feature choice.

For feature choices in an unbound state, it is also possible to restrict the space of can-
didate feature selections through downselection. Downselection reduces the available
diversity for a feature, while still leaving some diversity open in the unbound deci-
sion.

The semantics of downselection on the feature types in a feature model will obviously
depend on the feature modeling language. In this paper, we focus on the feature model
language and semantics of the Gears PLE Lifecycle Framework from BigLever Soft-
ware. Following are examples of downselection on the discrete feature types in Gears,
enumerations, sets, and booleans.

• Enumerations. An enumeration is a feature with a discrete, enumerated set of
member choices. One and only one member is selected to define an enumeration
feature choice.

Downselection in an enumeration type feature means removing one or more of the
members from consideration. A downselected member can never be chosen as the
value for that enumeration.

• Sets. A set is a feature with a discrete, enumerated set of member choices. Zero or
more members are selected to define a set feature choice.

Downselection in a set type feature means removing one or more of the members
from consideration. A downselected member can never be chosen as a member of
the full bound value for that set.

Inverse to downselection, it is also possible to partially select some of the set
members prior to fully defining the value for that feature. A selected member must
always be chosen as a member of the fully bound value for that set.

• Booleans. A boolean feature is simply a special case of an enumeration, with two
members: true and false. Since downselection of one of its members would fully
determine the value of a boolean, downselection is neither needed nor supported on
boolean type features.

Figure 1 shows an example of a downselection for an enumeration feature type. As
indicated visually by the red strikethrough, the DualZone member of the unbound
ZoneType enumeration feature in a partial profile has been downselected and no
longer available for inclusion in partial or fully bound profiles in descendants in a
multistage configuration tree.

Copyright © 2013 BigLever Software, Inc. 3

Cathy Martin
2020

Figure 1. Unbound Enumeration with Downselection

Figure 2 shows an example of a downselection for a set feature type. As indicated
visually by the red strikethrough, the Attitude member of the unbound DualZone set
feature in a partial profile has been downselected and no longer available for inclu-
sion in partial or fully bound profiles in descendants in a multistage configuration
tree.

Figure 2. Unbound Set with Downselection

2.2.	 Inheritance Rules

The partial profiles and fully bound profiles in a multistage configuration tree are
governed by inheritance rules. Feature selections and downselections made at any
node in a multistage tree are inherited by all descendants of that node, thereby defin-
ing a product family subtree.

The feature decisions – selections, downselections and transitions from unbound to
defined – along any connected path from the root node to a leaf node in a multistage
configuration tree must be monotonically decreasing. Child profiles inherit and may
not override the feature decisions made by their parents and ancestors on the path to
the root. Child profiles may optionally decide to make additional feature decisions
that further constrain and define the space of available feature choices.

Any profile that defines all remaining unbound feature choices becomes a leaf profile
in its multistage binding tree. In theory, a fully defined profile could have a mono-
tonically decreasing child that was identical, but this redundancy serves no purpose,
so we disallow fully bound feature profiles from having children.

The monotonically decreasing property of multistage configuration trees assures that
each node in a profile tree defines a subfamily of partially bound and fully bound pro-
files. Within a subfamily all descendant of a profile node inherit the feature decisions
from that node and its ancestors. These inherited feature decisions determine the
commonality of shared feature decisions within the subfamily.

Copyright © 2013 BigLever Software, Inc. 4

Cathy Martin
2020

Figure 3 shows a multistage configuration tree for managing a simple HomeClimate-
Control system in the Gears production line browser. The root of the tree – the feature
model – is the second item in the list, labeled Features. There are two child partial
profiles of the root, Automatic and Manual, that contain subfamilies for automated
home climate control systems and for manually controlled home climate control sys-
tems. Within the Automatic family, there are three child members that are fully de-
fined feature profiles: AutoDualAllHeatCool, AutoTriZoneHeatCool and NewProto-
type. Similarly, the Manual family has two child members.

Figure 3. Multistage Configuration Tree for HomeClimateControl

Figures 4, 5, and 6 show a monotonically decreasing path in the multistage configura-
tion tree in Figure 3, starting from the root Feature model in Figure 4, to the Auto-
matic partial profile in Figure 5, to the leaf feature profile AutoDualAllHeatCool in
Figure 6.

The feature decision of Auto for the SystemType enumeration in the partial profile in
Figure 5 is inherited by the child profile in Figure 6, where the SystemType feature
and its decision radio button are grayed out to indicate that the decision cannot be
changed in the child profile due to the inheritance rules. The Automatic subfamily tree
defined by the partial profile in Figure 5, leaves the decisions about ZoneType and
HVACType fully unbound, so the full combinatoric space of possibilities from those
two features is available in the subfamily.

The AutoDualAllHeatCool profile shown in Figure 6 fully binds all of the feature
decisions left unbound in its parent. Therefore, this profile becomes a fully bound leaf
node in the tree.

3. Product Line Scoping Revisited

Conventional wisdom from the product line engineering literature makes a good ar-
gument that when the available feature diversity within a product line is high and the
commonality is low, the benefits of leveraging the small amount of commonality dur-
ing the engineering process may be negated by the overhead of managing the variabil-
ity. In these cases, the conventional guidance is to split the product line into multiple,
smaller and more internally cohesive product lines that each possess higher ratios of
commonality to variability[6].

The drawback of this approach is that after a product line is split into smaller and
more cohesive families, these subfamilies become silos that can no longer take disci-
plined advantage of any commonality that exists among them. It suffers from the clas-
sic clone-and-own problem, but in this case for entire product families.

Copyright © 2013 BigLever Software, Inc. 5

Cathy Martin
2020

Figure 4. Feature Model

Figure 5. Automatic Partial Profile

Figure 6. AutoDualAllHeatCool Fully Defined Feature Profile

Copyright © 2013 BigLever Software, Inc. 6

Cathy Martin
2020

Multistage configuration trees offer an alternative to splitting large and diverse prod-
uct families into multiple internally cohesive but isolated subfamilies. By keeping the
multiple families organized in a multistage configuration tree, cohesive subfamilies
can be grouped into subtrees within the same tree.

The multistage subtrees provide the cohesiveness and lower diversity of the smaller
subfamilies through appropriate selections, downselections and unbound states in
their parents and ancestors in the multistage configuration tree. The commonality
among the diverse subfamilies, no matter how large or small, is shared from the
common ancestor nodes on the path to the root, thereby avoiding the need to split into
independent subfamilies and become divergent through clone-and-own. The benefits
become clearly evident in very large product families, where decisions or changes
made at higher levels in a multistage configuration tree are inherited by hundreds,
thousands, or even millions of subfamilies and product instances.

4. Multistage Configuration Trees for Hierarchical

Product Line Families

A core characteristic of 2GPLE is hierarchical product lines – the capability to hierar-
chically compose larger product lines from a collection of smaller product lines[3].
This is analogous to building a system-of-systems in one-of-a-kind systems engineer-
ing, but in this case each system and subsystem is a product line. The result is a
product-line-of-product-lines. Multistage configuration trees can also be applied to
managing the configuration of these hierarchical product line families.

The application of multistage configuration trees that we’ve discussed thus far in this
paper have been applied within the context of a single product line, to structure sub-
families and family members within the product line. Hierarchical product lines intro-
duce another mechanism to define a larger granularity product family, but in this case
the family is defined in terms of variant assemblies of the different “flavors” offered
by each of the composite product lines in the product line hierarchy. In commercial
PLE practice, we are finding that multistage configuration trees applied to hierarchi-
cal product line families is essential in managing very large product lines of this form,
such a automobiles which are comprised of approximately one thousand hierarchical
subsystems.

At this point, we now have put four hierarchies into play.

• feature model trees for a product line

• multistage configuration trees applied to feature profiles for a product line

• product-line-of-product-line trees

• multistage configuration trees applied to hierarchical product line assemblies.

Fortunately, adding the last item to the list and as another hierarchy to the product line
methodology is simpler than it might seem. The following example illustrates how
multistage configuration trees help significantly with hierarchical product line fami-
lies.

Starting with our previous example of the Home Climate Control system, we add two
more product lines, Home Security with different capabilities for intruder detection
and alerts, plus Home Fire Protection with different capabilities for fire detection,
alerts and suppression. Each of these three product lines is offered in different con-
figurations of features, similar to the product offerings shown for our home climate
control system shown in Figure 3.

To create the product line hierarchy for this example, these three product lines are
composed into a larger product line called Home Automation. Figure 7 illustrate this
product line hierarchy in Gears. HomeAutomation is the root product line and Home-
ClimateControl, HomeFireProduction, and HomeSecurity are nested product lines,
indicating their composition in the higher level HomeAutomation product line.

Copyright © 2013 BigLever Software, Inc. 7

Cathy Martin
2020

Figure 7. HomeAutomation Hierarchical Production Line

A product marketing role can now define the Home Automation products that will be
offered to the market by enumerating them in a product Matrix. As illustrated in the
matrix in Figure 8, the products are branded under the name of ComfortHome, with
model numbers such CH10 and CH55.

Figure 8. Home Automation Product Definitions in a Matrix of Nested Product Lines

Each product offering at the Home Automation level is defined as a named product
row in the matrix. The columns correspond to the nested product lines and the values
selected for each cell in a row are selected from the products offered in each of the
nested product lines. For example, in the HomeClimateControl column you will rec-
ognize the product offerings we defined in Figure 3 and Figures 4 through 6.

The drawback of the management of the product line hierarchy in this monolithic
listing is the same as the drawback discussed in the first part of this paper for manag-
ing a single product line as a monolithic collection of feature profiles. Particularly as
the product line gets very large and the list of products in the product matrix gets very
long, it becomes difficult to express and decipher the families and subfamilies within
the space.

For example, in Figure 8, the ComfortHome product line is divided into 3 cohesive
subfamilies for marketing purposes, but the only hint of these subfamilies is a weak
naming convention in the left column: 10’s, 20’s and 50’s. From the perspective of
product marketing, of engineering, and of the consumer, there is no clear way to see
or take advantage of the commonalities and better manage the variabilities within this
product space.

Applying multistage configuration trees to the definition of hierarchical product lines
addresses this deficiency.

Figure 9 shows a multistage configuration tree of matrices in Gears, analogous to the
multistage configuration tree of feature profiles shown in Figure 3. Each of the named
“grid” icons corresponds to a single-row matrix, similar to Figure 8.

The root matrix, ComfortHome, will have no decisions bound, analogous to a feature
model. The three child matrices below the root, Base, Mid, and Deluxe group sub-
families and define selections, downselections in their respective matrices that are
inherited by all descendants in the subfamily. The fully bound models, such as CH10
and CH55, are at the leaves of the tree and contain fully bound matrix rows.

Note the small ‘T’ on some of the matrix icons. This indicates a partially matrix,
meaning that the matrix is a template that contains unbound decisions. Fully bound
matrices with all decisions made are shown as grid icons without a ‘T’. Following the
same inheritance rules as in multistage configuration trees for feature profiles, partial

Copyright © 2013 BigLever Software, Inc. 8

Cathy Martin
2020

matrices will be be found at internal nodes or leaves in the tree, while fully bound
matrices will be found only as leaves in the tree, with no children.

Figure 9. Multistage Configuration Tree for the HomeAutomation Family

Figures 10, 12 and 15 show a monotonically decreasing path in the multistage con-
figuration tree from Figure 9. Figures 11, 13 and 14 show intermediate states using
Gears to create and edit this multistage configuration tree.

Starting with the ComfortHome root matrix in Figure 10, all of the decisions remain
unbound as seen in the matrix cells for each of the nested product line columns.

Moving to Figure 11, the Mid partially bound matrix, the pulldown menu shows the
available offerings from the nested HomeClimateControl product line. The selection
being made is the Automatic subfamily of HomeClimateControl, which will limit
future selection in the descendants of the Mid subfamily to only come from the Auto-
matic subfamily of HomeClimateControl. This illustrates an interplay between the
multistage configuration tree of the overarching HomeAutomation product line and its
subordinate HomeClimateControl product line. Figure 12 shows the end result after
making the Automatic selection.

Downselections in a partially bound matrix eliminate certain choices that are being
offered from the nested product lines. Figure 13 shows the downselections that have
been set on the Mid partially bound matrix. The intent of the product marketing role
who set these downselections is to express that the midrange products in the product
subfamily are constrained to never select from these downselected offerings. For ex-
ample, in the center downselection dialog for HomeFireProtection in Figure 13, two
choices have been eliminated for all descendants in the Mid subfamily. Removing the
$omitted$ option means that every Mid subfamily member must select one of the
available HomeFireProduction options. That is, every Mid product member must pro-
vide some form of home fire protection.

Moving to the multistage configuration tree leaf CH22, a fully bound matrix defini-
tion, decisions inherited from the Mid parent can be seen in Figure 14. Because the
Automatic subfamily from HomeClimateControl was selected in Figure 11, none of
the Manual options are available. Furthermore, the $omitted$ and the AutoTriZone-
HeatCool choices were downselected in Figure 13, so they are not available in the
Figure 14 selectable options for the CH22 product.

Figure 15 shows the final result of the fully bound CH22 leaf in the multistage con-
figuration tree.

Copyright © 2013 BigLever Software, Inc. 9

Cathy Martin
2020

Cathy Martin
2020

Figure 10. Root of the ComfortHome Multistage Configuration Tree

Figure 11. Selecting the Automatic HomeClimateControl Subfamily for the Mid Partially Bound Matrix

Figure 12. The Mid Partially Bound Matrix

 HomeClimateControl HomeFireProtection HomeSecurity

Figure 13. The Mid Downselections

Figure 14. Selecting the AutoDualAllHeatCool HomeClimateControl for the CH22 Fully Bound Matrix

Figure 15. The CH22 Fully Bound Matrix

Copyright © 2013 BigLever Software, Inc. 10

Cathy Martin
2020

5. Evolution of Multistage Configuration Trees

Just like feature models, feature profiles, product profiles, PLE assets, variation points
and other constructs in an operational product line, multistage configuration trees are
subject to constant evolution to support the ongoing evolution of a product line.
Whenever changes are made on the multistage configuration tree constructs in feature
models, feature profiles, or matrices, the implications must be considered and propa-
gated across the full multistage configuration tree. As a reminder, the new constructs
that have been introduced are:

• unbound states on feature choices and matrix choices

• partial selections in partially bound profiles and matrices

• downselections in partially bound profiles and matrices

Fortunately the inheritance rules in multistage configuration trees provide clear se-
mantics and guidance, as well as opportunity for automated impact analysis and sup-
port for interactive refactoring on widespread changes.

The evolutionary changes that need to be supported fall into two categories: reducing
the space of variability in a multistage configuration subfamily by constraining avail-
able choices and expanding the space of variability in a multistage configuration sub-
family by relaxing available choices.

5.1.	 Evolution when reducing the space of variability in a

multistage configuration tree

The changes that will reduce the space of variability in a multistage configuration tree
are:

• changing the state of feature or matrix choice from unbound to a partially or fully
bound selection

• changing a feature or matrix choice from partially bound to fully bound

• applying additional selections in a partially bound feature or matrix choice

• applying a downselection to a feature or matrix choice

These changes that reduce the space of variability must conform to the inheritance
rules and selections of the ancestors. If the change is made within an internal node in
a multistage configuration tree, these tighter constraints need to be propagated down
to the descendants in the subfamily. Because the change is narrowing the space of
possible variability, some new decisions can be automatically determined and some
existing decisions within the subfamily may become invalid, Therefore, automated
propagation, semantic checking, and reporting is crucial.

At the time of this writing, Gears’ propagation of reduced variability is fully auto-
matic for cases where the original value of the ancestor and descendant are identical.
In cases where the ancestor and descendant values are different, the propagation op-
eration will leave the descendant’s value unchanged and rely on semantic checks to
report those descendants that no longer satisfy the monotonic decreasing property.

An upcoming release of Gears is planned to support an interactive option, where the
user can incrementally resolve each violation detected during the top-down propaga-
tion operation. Any changes made by the user to a node in the multistage configura-
tion tree will recursively invoke the propagation from that updated node, rather than
to continue propagating the value from the original ancestor.

5.2.	 Evolution when expanding the space of variability in a

multistage configuration tree

The changes that will expand the space of variability in a multistage configuration
tree are:

• changing the state of feature or matrix choice from a fully bound to a partially
bound or unbound selection

Copyright © 2013 BigLever Software, Inc. 11

Cathy Martin
2020

• changing the state of a feature or matrix choice from a partially bound selection to
unbound

• reducing selections in a partially bound feature or matrix choice

• removing a downselection on a feature or matrix choice

These changes that expand the space of variability must conform to the inheritance
rules and selections of the ancestors. If the change is made within an internal node in
a multistage configuration tree, the modeler might want the weaker constraints to be
propagated down to the descendants in the subfamily. However, because the change is
relaxing the space of possible variability, propagation is optional since none of the
decisions within the subfamily will become invalid. Automated propagation would
require human or heuristic guidance on how to deterministically relax existing
choices within the subtree.

At the time of this writing, this support has not yet been implemented in Gears’ multi-
stage configuration trees.

6. Partial Configuration of PLE Assets

Supporting partially bound feature profiles and partially bound matrices as semanti-
cally valid constructs in a multistage configuration tree opens the possibility of doing
partial configuration of PLE assets. Automated product configuration in 2GPLE is
enabled by variation points in the PLE assets that define the mapping from feature
selections in feature profiles to the configuration of some encapsulated feature-based
diversity in the the asset[3].

There are three conditions to consider for a variation point when performing partial
configuration based on partial profiles.

• If all feature values referenced by the variation point mapping logic are fully de-
fined, then the variation point can be fully configured.

• If none of the feature values referenced by the variation point are defined, then the
variation point remains unchanged in the configured asset.

• If some but not all of the feature values referenced by the variation point are fully
defined, reduction on the mapping logic is required.

• In some cases the reduction will fully resolve the mapping, in which case the
variation point configuration can be completed.

• In some cases, the reduction will leave the mapping unchanged, in which case
the variation remains unchanged in the configured asset.

• In some cases the mapping can be reduced to a simpler form, but the mapping
cannot be fully resolved, in which case the variation remains in the configured
asset with the simplified form of the mapping logic.

Fully bound matrices and profiles at the leaves of a multistage configuration tree are
used to automatically configure assets for product instances. The need and the value
of this is clear. Partially bound matrices and profiles in a multistage configuration tree
can be used to automatically configure partially bound assets for product subfamilies.
What is the meaning, need and value of this?

The answer will vary based on the asset type and how an organization uses the asset
types in their engineering and business processes.

For example, partial configuration of source code that doesn’t compile may not be of
much interest. However, inspecting a partially configured set of requirements for a
subfamily of low-end products and comparing that to a subfamily of high-end prod-
ucts could offer valuable insights about the common and variant properties of those
two subfamilies. Unexpected content in the requirements for a subfamily might lead
to a refinement in the definition of the product family feature profiles or matrix pro-
files, or it might indicate a defective mapping for a variation point that needs to be
fixed.

Copyright © 2013 BigLever Software, Inc. 12

Cathy Martin
2020

7. Related Work

Staged configuration was introduced by Czarnecki, Helsen, and Eisenecker as a
means of distributing the process for specify a feature model configuration among
multiple roles across an extended timeline and workflow[4]. This concept has been
formally modeled and enhanced in subsequent studies, including [7, 8, 9].

The focus of these studies is on how to support the sequential configuration of a fea-
ture model as it is handed off from one role to another during different stages of a
business or engineering workflow. Multistage binding trees similarly enable incre-
mental staging of feature selections along a branch in a multistage configuration tree,
but they are intended for the organization of large, multi-level product line subfami-
lies, where staging across multiple roles or across workflows with extended timelines
does not apply. Multi-level subfamilies within a multistage configuration tree are of-
ten engineered by a single individual or small team. Multistage configuration trees are
intended to support concurrent development by different roles on parallel branches
rather than sequential development by different roles along a single branch.

Reiser introduced the notion of product sublines in his PhD thesis[10]. His definition
of a subline is based on product line scope subset, which is the equivalent to the defi-
nition of subfamilies in multistage configuration trees as being monotonic decreasing
in variability relative to their ancestors. Reiser’s work on sublines focuses on the hier-
archical structure and staged configuration of assets rather than feature models or
product profile models. Multistage configuration tree methods, on the other hand,
focuses on the feature models and feature-based product models for a product line.
With multistage configuration trees, the approach for deriving assets associated with
any node in a multistage configuration tree is to apply 2GPLE automated configura-
tion to the source repository of fully non-configured PLE asset supersets, using any
partially bound or fully bound profile from a multistage configuration tree, as de-
scribed in Section 6.

Elsner explored how staged configuration could be applied to the derivation of assets
in a heterogeneous composition of multiple product lines (what 2GPLE refers to as
hierarchical product lines)[11]. His work adheres to the seminal definition of staged
configuration as a sequential and incremental configuration, distributed over roles and
time[4]. Although this work does accommodate the need for the composition of a
product-lines-of-product lines, we have shown the richer need and solutions for dis-
tinct support of multistage configuration trees within both a single product line and
across the composition structures in a product-line-of-product-lines composition.

8. Future Work

As discussed in Section 5, Evolution of Multistage Configuration Trees, the inheri-
tance rules in multistage configuration trees allow changes made close to the root of a
multistage configuration tree to be propagated throughout all of the descendant sub-
families and family members. The benefit is that a single change to an ancestor node
might be easily propagated to hundreds, thousands or millions of subtrees and in-
stances. Of course, as would be affirmed by anyone who has worked to deliver prod-
ucts in a product line organization, this is also an opportunity for errors and unin-
tended consequences.

Tools and techniques need to be identified that will provided detailed impact analysis
and to also support human-guided propagation of changes. An example of the latter
include marking nodes that require propagation, but allowing the owners of these sub-
families to respond lazily when they have the time, resources and need to do so.

Another alternative would be in the style of code refactoring tools, where the intent of
a change could be declared before it was made, so that the tool could both perform the
intended change (such as removing a downselection with the intent to also relax all
compatible descendants), and then also guide the engineer with specific rationale in
the refactoring at each of the candidate update sites during the propagation throughout
the descendant subfamilies and family members.

Copyright © 2013 BigLever Software, Inc. 13

Cathy Martin
2020

The use of multistage configuration trees in commercial practice is relatively new,
though the early experience with large scale product line organizations has strongly
positive and is creating enthusiastic early adopters. The demand and opportunities for
the industry to benefit from multistage configuration trees appear to be high as we
introduce this new concept across a broad range of industry analysts, trade publica-
tions editors, and our existing and new customer organizations.

We anticipate that over time patterns, styles and scenarios of use will emerge. An
early example of a common usage scenario that exposed a conceptual and tooling
need was in the pattern of a user traversing up and down a multistage configuration
tree, attempting to visualize and comprehend the monotonically decreasing selections
and downselections for an individual feature along the path from the root of the fam-
ily or subfamily tree to a descendant subfamily or individual product. We plan to cap-
ture pattens like this and reflect them back into the Gears tool, as well as to the PLE
community as lessons learned and as best (and worst) practices.

References
(1) BigLever Software, “BigLever Software Gears,”

http://www.biglever.com/solution/product.html

(2) Krueger, C. and Clements, P. “Systems and Software Product Line Engineer-
ing,” Encyclopedia of Software Engineering, Philip A. LaPlante ed., Taylor and
Francis, 2013, in publication.

(3) Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. “Feature-Oriented
Domain Analysis (FODA) Feasibility Study” (CMU/SEI-90-TR-021,
ADA235785). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1990

(4) Czarnecki, K., Helsen, S., Eisenecker, U. “Staged Configuration Using Feature
Models”, Proceedings of the 2004 Software Product Line Conference (SPLC),
Boston, MA, USA, August 2004.

(5) Flores, R., Krueger, C., Clements, P. “Mega-Scale Product Line Engineering at
General Motors,” Proceedings of the 2012 Software Product Line Conference
(SPLC), Salvador Brazil, August 2012.

(6) Clements, P., Northrop, L. Software Product Lines: Practices and Patterns, Sec
5.5, Addison-Wesley, 2002.

(7) Hubaux, A., Classen, A., Heymans, P. “Formal modelling of feature configura-
tion workflows”, Proceedings of the 13th International Software Product Line
Conference (SPLC), pages 221-230, San Francisco, CA, USA, August 2009.

(8) Bagheri, E., Di Noia, T., Gasevic, D., Ragone, A. “Formalizing interactive
staged feature model configuration,” Journal of Software: Evolution and Proc-
ess, Volume 24, Issue 4, pages 375–400, John Wiley & Sons, 2012.

(9) Schroeter, J., Lochau, M., Winkelmann, T. “Multi-perspectives on Feature
Models”, Proceedings of the 15th International Conference on Model Driven
Engineering Languages and Systems, pages 252-268, Innsbruck/AUSTRIA,
September 2012.

(10) Reiser, Mark-Oliver, “Managing Complex Variability in Automotive Software
Product Lines with Subscoping and Configuration Links”, PhD thesis,
Technische Universität Berlin, December 2008.

(11) Elsner, Christoph, “Automating Staged Product Derivation for Heterogeneous
Multi–Product-Lines”, PhD thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg, 2012.

Copyright © 2013 BigLever Software, Inc. 14

http://www.biglever.com/solution/product.html
http://www.biglever.com/solution/product.html
Cathy Martin
2020

