
Lessons from AEGIS: Organizational and Governance
Aspects of a Major Product Line in a

Multi-Program Environment

Susan P. Gregg
Rick Scharadin
Lockheed Martin

199 Borton Landing Road
Moorestown, New Jersey 08057 USA

+1 609 326 4685
susan.p.gregg@lmco.com

richard.w.scharadin@lmco.com

 Eric LeGore
U.S. Navy/PEO IWS

1333 Isaac Hull Ave SE
Washington Navy Yard, DC 20376

+1 202 781 2251
eric.legore@navy.mil

Paul Clements
BigLever Software

10500 Laurel Hill Cove
Austin, Texas 78730 USA

+1 512 426 2227
pclements@biglever.com

ABSTRACT
This paper tells the story of the AEGIS Weapon System product
line and how it evolved from a series of standalone software
programs with no sharing into a true systems and software product
line. The paper focuses on the strong internal and external
governance of the product line. The need for strong governance is
brought about by the strong role that the AEGIS customer
community plays in oversight of design, development, and
procurement. The paper recounts the product line’s beginnings,
and describes how the product line is operated today.
Organizational issues, measurement issues, and governance issues
are covered, along with a summary of important lessons learned
about operating a product line in an environment of strong
competing interests.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line engineering,
software product lines, feature modeling

General Terms
Management, Design, Economics.

Keywords
Product line engineering, software product lines, feature
modeling, feature profiles, bill-of-features, hierarchical product
lines, variation points, product baselines, product portfolio,
product configurator, product derivation, product audit, second
generation product line engineering, product line governance,
AEGIS, Navy, command and control, combat systems

1. Introduction
This paper tells the story of the AEGIS Weapon System and how
it evolved from a series of standalone programs with no sharing

into a true systems and software product line that today ranks as
one of the most important and successful examples of product line
engineering in the U.S. Department of Defense [3].

Figure 1 AEGIS sea platforms include cruisers and destroyers
in the U.S. and allied navies, as well as U.S. Littoral Combat

Ships and U.S. Coast Guard National Security Cutters.

What sets this narrative apart from other product line studies is its
focus on internal and external governance. By governance, we
mean the practices by which the product line is managed and
controlled. With AEGIS, management and control come not just
from the development organization, as might be expected, but
from stakeholders external to that organization. Because each ship
class is a major undertaking with national and international
visibility, it has a strong constituency of its own. Customer
pressures for development specific to their individual needs are
extremely strong. And yet both the customer organizations and the
development organization understand the overriding advantages
of the product line approach and together have worked very hard
to put in place a strong product line governance structure. While
we provide enough background information to put the governance
story in context, it is the governance that is the focus of this paper.

© 2014 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SPLC '14, September 15 - 19 2014, Florence, Italy

Copyright 2014 ACM 978-1-4503-2740-4/14/09…$15.00.
http://dx.doi.org/10.1145/2648511.2648541

The paper begins with an overview of AEGIS in Section 2.
Section 3 narrates the history of the product line from its
beginnings as a set of independent software programs through the
development and maturation of the product line. Section 4 gives a
snapshot of the product line processes in play today. Section 5
describes the organizational structure put in place by the
development organization to support the product line’s goals.
Section 6 describes the strong and elaborate governance
mechanisms that are necessary to ensure the continued vitality of
the product line. Section 7 describes some of the metrics that are
collected specifically having to do with the product line approach.
The AEGIS story would not be interesting and its governance
structure not worth understanding if the program were not
successful; Section 8 demonstrates why it is. Those heavily
involved with AEGIS look back at a number of important lessons
learned; the best of these are shared in Section 9. Finally, Section
11 closes the paper by looking to the future of AEGIS.

2. What is AEGIS?
The AEGIS Combat System, named after the mythical shield of
Zeus, is a highly integrated total ship combat system. AEGIS
cruisers and destroyers constitute the majority of the U.S. surface
Navy and will continue to form the core of the surface fleet for the
next several decades. The AEGIS Combat System is capable of
simultaneous warfare on many fronts: anti-air, anti-surface, anti-
submarine, and strike warfare [8]. AEGIS is deployed on some
100 naval vessels in the U.S. Navy, navies of key U.S. allies
across the globe, vessels of the U.S. Coast Guard1, and even land-
based ballistic missile defense installations (Figure 1). AEGIS is a
system that protects assets from airborne attack from aircraft or
missiles. It detects airborne threats, plans how to engage them,
and launches missiles to intercept and neutralize them.

Figure 2 This viewgraph from the AEGIS program highlights
the missions of AEGIS. “ASCM” stands for anti-ship cruise
missile. “DDG” and “CVN” signify destroyer and aircraft

carrier, respectively.
The mission of AEGIS, summarized in Figure 2, includes

• self-defense (protecting the host platform from attack),

• area air defense (for example, protecting a naval task
force that includes the host platform), and

• long-range air defense and ballistic missile defense (for

1 The Coast Guard vessels employ portions of AEGIS, as we will see in

Section 3.

example, protecting a geographical area from long-
range ballistic missiles).

At the heart of the AEGIS Combat System is the AEGIS Weapon
System (AWS), which is a centralized, automated, command-and-
control and weapons control system that was designed as a total
weapon system, from detection to kill. The prime contractor for
the AEGIS Weapon System is Lockheed Martin’s Mission
Systems and Training Division. There, some 1500 people work on
the AEGIS program where, among other things, they maintain the
over one hundred thousand AWS requirements and over ten
million lines of source code used by AEGIS (some 1.8 million
SLOC in the last major upgrade alone). Lockheed Martin employs
116,000 people worldwide and is one of the world’s largest
defense contractors.

Several different U.S. Government agencies make up the
customer side of the AWS picture.

• The U.S. Navy is represented by a department called
Program Executive Office (for) Integrated Warfare Systems
(PEO-IWS). PEO-IWS oversees development and delivery
of dozens and dozens of Navy surface combat systems (for
foreign navies as well as the U.S. Navy), from guns and
radars up to entire integrated combat systems such as
AEGIS.

• The Coast Guard oversees procurement of its AEGIS-based
software.

• The U.S. Missile Defense Agency, whose mission is to
develop and deploy a layered ballistic missile defense
capability for the United States, counts AEGIS platforms
among its missile defense assets and so also plays an
oversight and customer role.

Each member of the AEGIS product line – the integrated weapon
system for a guided missile cruiser, for example – is a large,
complex, and expensive system in its own right. The combat
system for a naval vessel is in effect the whole reason for the very
existence of the ship. Each ship occupies a place on the national
and international stage, giving its program office the motivation to
push for ship-specific concessions that subjugate the good of the
overall product line.
This sets AEGIS apart from, say, a product line of mass-produced
and mass-consumed products in which individual customers do
not play a large role or may even be anonymous. With AEGIS, the
customer agencies are heavily involved in many development-
related decisions that affect cost, capability, requirements, and
even high-level design.

This, plus the sometimes-conflicting priorities of the different
customer-side agencies, makes a strong governance regime
essential to avoid stalemate and chaos.

Architecturally, AEGIS is a system of systems [9] comprising
elements that include the AEGIS Display System, Command and
Decision, SPY Radar, Weapon Control System, AEGIS Training,
Mission Planner, and Operational Readiness. These elements
constitute the fire control loop that enables AEGIS to fulfill its
mission.

The AEGIS software architecture, shared by all variants in the
product line, is layered; application components populate the top
layer. Components communicate by message passing (Figure 3).
In addition, the architecture is open, meaning that the layers and
the components have published interfaces that conform to
organizational and/or industry published standards.

Figure 3 Layered view of the AEGIS product line software

architecture

3. Beginnings of the Product Line
AEGIS began as a family of separate programs. In the early
2000s, there were over 1500 people working on nine major
programs for the U.S. Navy, each of which was concerned with
one or more ships in the AEGIS family. During this time, each
program operated in an isolated manner. There were independent
management structures, multiple review teams, varying processes
and tools, redundant program plans, different architectures, and
multiple independent requirements and source libraries.

To create a new program (or baseline), all specifications and
source code from a previous program (sometimes still in
development) would be copied with new development and
maintenance then conducted independently and in parallel.
Programmatic and technical decisions could be made for one
baseline independent of other baselines, which was in fact seen as
an advantage in terms of schedule and technical flexibility.

Of course, a large disadvantage stemmed from redundant work
efforts, particularly in the area of requirements and code
maintenance.

In the mid-2000s, a number of business and technical forces
began to bear on AEGIS that encouraged and enabled its
migration to a true product line.
First, the Navy let it be known that paying to fix the same defect
(or make the same enhancement) multiple times (once for each
program) was problematic and would soon become cost-
prohibitive. Lockheed Martin responded by creating a common
defect approach for requirements and software that leveraged
defect repair effort across all of the programs. “Fix it once!”
which would become a major theme of AEGIS, was now in play.
From this early effort at sharing came the realization that forceful
driving was required – the separate Navy customers driving the
separate AEGIS programs needed to coordinate and consolidate
the prioritization of their defect repair needs. This was an
embryonic form of the cross-program governance that would
prove to be so critical to this product line’s success.

Also about this time, the Navy was strongly pushing its
contractors to follow technical approaches that encouraged reuse,
opened up competition, and employed commercial off-the-shelf
(instead of purpose-built) hardware and software. This “Open
Architecture” initiative touted the benefits of an architecture
designed as a set of modular components with published
interfaces. In theory, any contractor could bid to provide any of

the components, thus driving up competitiveness and driving
down development and maintenance cost to the Navy.

As an example of the Open Architecture push, the Deputy Chief
of Naval Operations for Warfare Requirements and Programs
established the requirement to implement Open Architecture
principles across all surface Navy combat systems in December
2005 [11]. This directive followed many other OA initiatives,
Navy instructions, and acquisition regulations ([10], for example).
Meanwhile, the product line movement was gaining steam.
Clements and Northrop [5] have written definitively that reuse
and a componentized architecture (two pillars of the Open
Architecture approach) do not constitute a product line. However,
there are synergies between the two philosophies (as outlined in
[6]) that, together, constitute a strong acquisition approach that
some in the Navy were touting.

For example, a 2008 article in the influential Journal of the
American Society of Naval Engineers stated categorically that
Open Architecture was not sufficient to meet Navy goals, and that
a true product line approach was needed [11].

In any case, the Open Architecture movement provided a strong
foundation for the AEGIS product line by

• strongly encouraging a modular architecture

• strongly discouraging one-at-a-time development of
system components that could and should be shared
across programs

• strongly signaling an intent to increase competition, and

• making it clear that clone-and-own systems, even
successful ones, were becoming unaffordable.

Lockheed Martin, clearly understanding the competitiveness
implications, made the commitment to become the most
competitive of all of the potential contractors, so as to maintain
their role in AEGIS. To do this, they adopted product line
engineering as their development paradigm. By 2009 they had
adopted Gears [2] as the tool to configure their shared assets and
were employing the factory-based product line approach shown in
Figure 4. By 2009 they were building the largest requirements and
code baseline in AEGIS history. They had, by this time, merged
separate anti-aircraft warfare and missile defense software
components from the various separate software programs into a
common integrated air and missile defense system that could be
configured to support any of the ships in the family.
AEGIS AWS was now a fully mature product line. It enjoys
common oversight and governance, unified review teams, merged
development teams, common processes and tools, common
management plans, a shared architecture, and a single
specification and code base feeding into an automated
configurator.

In 2011 Lockheed Martin was awarded the contract for the third
member of the Littoral Combat System (LCS) ship class. In
previous years, they would have spun this program off on its own
development and maintenance trajectory after copying all of the
relevant assets: requirements, code, and tests. Now, however, it
was incorporated as a new member of the product line.

In 2011 the U.S. Coast Guard (with Navy encouragement) made
the decision to enter the AEGIS product line family by deploying
the AEGIS Display System and Command and Decision
components on their new National Security Cutter. Once in the
product line, they avoided the months it would have taken to
implement and verify the hundreds of fixes and upgrades that the

product line had already implemented. Instead, the Coast Guard
applied their unique feature-based requirements to the product
line’s requirements database and, using Gears, derived the
requirements for this new platform. This resulted in a much
quicker deployment of code and requirements for the Coast Guard
– weeks instead of months – and sent a strong message that
AEGIS was on the right track with its product line approach.

Since 2011, the Navy has provided maintenance funding to fuel
the paradigm of “Fix it once, pay for it once,” as opposed to
funding separate ship programs to each fix the same defects over
and over again, signaling that they understand the power of the
product line approach. Section 8 will discuss the payback to the
Navy for their support.

4. Lockheed Martin’s Product Line Approach
Lockheed Martin views its primary objective as developing once,
and building and deploying many times from one set of common
assets – principally requirements, source code, and tests. Feature-
based variation in requirements and code enables building a
member of the product line with or without a specific capability.

First, some terminology: Lockheed Martin calls a member of its
product line a configuration. A configuration might be, for
example, a weapon system to be deployed on specific destroyer.
The product line approach, then, exists to produce configurations
for customers.

Figure 4 illustrates the basic concept. Shared assets on the left
(only a few examples of which are shown) are imbued with
variation points. A variation point is a place where a shared asset
needs to differ based on whether a feature has been selected or not
for a configuration; variation points are defined in terms of
features. A feature profile, describing a configuration in terms of
the features it exhibits, is fed to the configurator, which configures
the shared assets by exercising their variation points to produce a
suite of asset instances specific to the needs of that configuration.

Figure 4 Basic concepts of the feature-based product line

approach: A configurator configures shared assets (such as
requirements, code, and tests, shown on the left) to

configuration-specific instances according to the feature
profile of the product line member being built.

Each configuration has a profile that identifies which capabilities
(modeled as features) are included. This method facilitates
profiles being updated as capabilities are matured and ready to be
deployed in any given configuration.

This configurator paradigm works in concert with other variation
mechanisms [1], such as frameworks, plug-in components,
configurable build scripts, site-specific config files, platform
adaptation data, and (at run-time) dynamic registration of services.

Figure 5 shows how this works for software components. The
coarsest-grained variation point is to include or exclude an entire
software component depending on whether or not the feature(s)
provided by that component are included in a configuration or not.
If a component is included, it can be further varied by exercising
variation points inside, again based on feature choices.
Lockheed Martin calls its factory the “Common Source Library,”
or CSL. CSL is broadly defined as the set of tools and processes
required to develop, store, and maintain both requirements and
source code to support product line development.

Beyond this paradigm for achieving variation, Lockheed Martin
considers the following as “pillars” of their product line process:

• Common shared assets: For requirements, CSL employs a
common specification repository (a DOORS database) that
contains all requirements for all programs/baselines, with
varying requirements captured in feature-based variation
points. This model allows for multiple baselines to share
requirements while having the flexibility for each baseline to
have unique requirements as well.

For code, a master software development repository is
utilized that contains source files, libraries, and configuration
files that support multiple configurations. Configurations
comprise common and unique capabilities such that
modifications to common configurations are implemented
once and feature-based variation is used to automatically
include or exclude each capability from a configuration.

Figure 5 The software view of the factory, showing

inclusion/exclusion of various components for different
configurations. An included component can occur in different

forms depending on how its variation points are exercised.

During the test and verification phase, CSL utilizes a
consolidated testing approach to maximize efficiency of
common requirements and capabilities. This results in
tailored regression testing based on changed functional areas.
CSL also utilizes an integrated test team using common test
plans and procedures. Common test efforts are leveraged and
consolidated problem reporting avoids duplicate reporting
caused by redundant testing.

• Regular, predictable build rhythm. CSL releases three
builds a year, one in each of January, May, and September.
This so-called “1-5-9” rhythm brings great stability to the
program. Everyone, inside CSL or out, can expect and plan
for the next release. Inside Lockheed Martin, build meetings

are held weekly, to make sure the next release is on track.
Not every customer configuration in the product line is
required to accept every release; each makes its own decision
according to operational needs and the content of the
particular build.

• Requirements review cycle. As in all product lines, changes
to requirements (whether to add new capabilities or address
defects) that are made for one configuration may have
intended and unintended impacts to other configurations, and
must be reviewed across the product line with that in mind. A
rigorous Requirements Review Cycle for programs is held in
March, July, and November (a “3-7-11” rhythm) and is a
joint Lockheed Martin/Government exercise.

• CSL governance (beyond the regular build rhythm and the
requirements review cycle mentioned above, which are part
of the governance regime in their own right). This is
discussed in Section 6.

5. CSL Organizational Structure
Organizational consolidation within Lockheed Martin became
possible (and, as we will see under the “Lessons Learned” section,
essential) under product line development.

In the narrative that follows, a product refers to one of the basic
elements of the AWS, mentioned in Section 2: The AEGIS
Display System, the SPY radar, the Mission Planner, and so on.
Each of these is developed as a product line in its own right, using
the approach outlined in the previous section. AWS is a system of
systems, built as a product line of product lines.

Lockheed Martin transitioned from traditional Integrated Product
Teams (IPTs) for a baseline to a number of product-oriented
teams that support all programs in the AEGIS family. The overall
goal was to consolidate program management to minimize
redundancy and achieve a common program structure and
consolidated business rhythm, metrics, and reviews.
Specific aspects of the product-line-focused team approach
include:

• Product Leadership Team (PLT): Full accountability for
products is assigned to the Product Leadership Team (PLT).
The PLT is responsible for delivery of the product to
multiple stakeholder programs.

• Baseline Delivery Lead (BDL): In place of the IPT lead is a
Baseline Delivery Lead (BDL) who is an integral part of
each product team but has more of a baseline/program focus.
Leads have been identified for requirements, software build
coordination, and Integration and Test (I&T) activities.
These leads ensure a product focus throughout each stage of
the product life cycle. Sub-product component leads are also
established.

BDLs maintain cost account status and financial reporting,
and oversee monthly in-depth product reviews. All programs
participate in the product reviews instead of each program
conducting a monthly in-depth review. BDLs also oversee
product metrics, focusing on product health, affordability,
and productivity. These include variation metrics to ensure
there was no capability leak in the requirements or software.

• Product architect: There is a product architect for each
major element of AEGIS who has technical responsibility for
the element or product. The product architect has cognizance
of new configurations coming into the CSL, and will provide
design considerations to facilitate bringing new capability
into the product portfolio while preserving product core to

maximize reuse.

• MB-SEIT: A collaborative Multi-Baseline Systems
Engineering Integration and Test (MB-SEIT) team ensures
key CSL aspects of system and software architecture. This
SEIT has decision authority to ensure proper CSL behavior
at the product level. This board drives consistent
methodologies to ensure each product can be built for each
program configuration. The SEIT controls the single
repository of requirements as well as the software, with their
built-in variation points that the configurator exercises.

• Product manager: A single product manager is the single
cost account manager for all control accounts. Sub-contract
management has also been moved to the product manager to
streamline communications with the teams.

Figure 6 Overview of CSL product team structure

Figure 6 summarizes. After the product teams were established,
the team makeup and operations were assessed and modified.
Roles and responsibilities were simplified. Component leads were
consolidated and the requirements and test lead focus shifted
based on the phase of development. The team consolidated
weekly meetings, increased training, and improved metrics
collection.

6. AEGIS Product Line Governance
This section discusses the all-important governance aspect of the
AEGIS product line, the focus of this paper. We distinguish
between internal governance, which is largely carried out by
Lockheed Martin as part of its normal development activities, and
external governance, in which agencies representing the
consumers of the individual combat systems exercise oversight
and influence.

6.1 Internal Governance
Programs in CSL are in all stages of development, including
programs brand new to the AEGIS family, which is a major
reason why internal governance is so important.

The “pillars” of the product line approach described in Section 4
and the organizational structure described in Section 5 certainly
make up important aspects of internal governance. In addition to
those, internal governance includes weekly meetings to monitor
and manage product line execution.

The advent of CSL and, with it, the product line approach led to a
consolidation of meetings and reviews. Since there is one build
schedule, there is one weekly software build meeting for all

products and programs. There is also one weekly coordination
meeting with program managers and technical leads from all the
programs, and a weekly cross-program MB-SEIT meeting where
technical topics are discussed. The requirements review cycles
and the consolidated Program Management Team (PMT) have led
to a consolidation of meetings on the customer side as well. There
is also a monthly product review.
Internal governance can be seen as comprising:

• Program planning. The program planning level provides
approval and direction on the configurations’ desired
capabilities, which will be documented in a capability
fielding plan. The plan will provide approval to build new
capability on a development branch, and direction to merge
that capability into the CSL mainline, as well as direction on
which builds will be used to support the road to certification.

• Program execution. The program execution aspect involves
approving product work packages and making a decision as
to the maturity of the capability for deployment to ships. The
program execution level will produce the artifacts to support
approval and decision points by the strategic and program
planning levels of governance. The program execution level
will make a recommendation, including test results and other
supporting information, on which CSL branch or mainline
load should be used to support the road to certification.

6.2 External Governance
Early in 2011 confusion erupted regarding product line
development in the CSL. The confusion centered on who in the
government was giving direction to Lockheed Martin, by what
authority, and what direction was being provided. There was, in
the words of one participant, “a lot of angst.” With multiple
contracts, different lines of funding, and competing resource
needs, it became quickly apparent that the needs and desires of
each program office needed to be coordinated and communicated
to the developer with one voice. In other words, governance was
required to coordinate between the various government program
offices and the developer. A major role of external governance is
to resolve or at least mediate the tension inherent in PLE but
especially inherent in a product line this large and complex and
given the importance of the capabilities of each of the
configurations. That tension is the specialized interests of the
individual programs versus the overall good of the product line at
large.

While Lockheed Martin worked to establish processes to manage
a coordinated planning approach and day-to-day development
activities to serve multiple masters, the government needed to put
in place a structure and associated processes to ensure clear and
consistent direction was being provided to maximize the
probability of success for all programs. This structure required
support for decision making at three levels: Strategic,
Programmatic, and Technical (see Figure 9). To this end, three
decision-making bodies were created along with a set of
governing artifacts.

• Technical: From a technical perspective, early expectations
were that all code changes, whether new development or
maintenance, i.e. defect fixes, would be conducted on a
single set of source, i.e. the mainline. It became quickly
apparent that not all program offices were satisfied with the
risks associated with this approach. Programs nearing the end
of their development had little appetite for allowing new
development efforts, sometimes widespread and complex, to
put their mature code at risk. What was required was the

ability to assess the risks of each development effort and
provide mechanisms for those high risk development efforts
to proceed without putting undue risk to other programs
using the same products and source files. The solution was to
provide for three avenues for code development: Mainline
Development, Development Branches, and Event Branches.
Additionally, a process for assessing risks and deciding
where to conduct each new development was required. To
this end a Joint Engineering Review Team (JERT) was
established and co-chaired by two lead system engineers
from the government, with technical representation by all
product users. The charter of the JERT is to (1) provide
direction on the conduct of development efforts; and (2)
provide guidance to the developer in all technical matters
impacting more than one program. New development efforts
are brought before the JERT with supporting data in order to
conduct a risk assessment. Those developments deemed to be
of low risk are allowed to develop in the Mainline while
those assessed as posing a significant risk to one or more
programs are designated for execution in a Development
Branch. (For the sake of completeness we note that Event
Branches are a special type of development path and are not
typically subjected to cross-program control. Event Branches
are a risk mitigation mechanism to allow maturing
configurations, i.e. all development is complete, to exit the
Mainline and continue their final grooming to support an
upcoming milestone event, such as Combat System
Certification.) Additionally, a date is set for the developer to
come back to the JERT to assess the readiness of the
development effort to terminate the development branch and
continue development in the Mainline. This decision point is
referred to as a Merge Decision and is supported by a fixed
set of criteria and associated data. Issues that cannot be
resolved at the JERT level are escalated to the programmatic
decision-making body. To date, no issues have required
escalation.

• Programmatic: To address the programmatic perspective, a
Joint Program Management Team (JPMT) was established
with four co-chairs (GS-152 level program managers) and
representation by all product users. In practice, the JPMT
serves as the tactical decision maker for all cross-program
issues. The charter of the JPMT is to (1) render schedule and
funding decisions; (2) apply programmatic considerations to
JERT recommendations and turn those recommendations
into decisions; and (3) provide a means of escalating
unresolved technical issues from the JERT. Issues that
cannot be resolved at the JPMT level are escalated to the
strategic decision-making body. To date no issues have
required escalation.

• Strategic: Strategic decision making is the charter of the
Major Program Manager (MPM) Board. This board is
chaired by three O-63 program managers with representation
by all product users. Future baseline content and strategic
direction is set by the MPM Board. The board reports
directly to its members’ respective flag officers (generals or
admirals).

To facilitate documentation and communication of product

2 GS-15 is a U.S. civil service rank of considerable management-level

seniority.
3 O-6 is a service-independent designation of rank. It is equivalent to a

Navy Captain.

development decisions, a set of governing artifacts was defined.
These artifacts serve to combine the strategic, programmatic, and
technical decisions and document those as official planning
documents:

• New Development Fielding Plan. This controls planning for
new and current functionality by explicitly mapping those
capabilities to baselines/configurations. This provides the
developer with up-front information to make intelligent and
efficient design decisions. This plan documents what new
capabilities the government wants available to all baselines
as opposed to any one specific baseline. As it is widely
accepted that universal capabilities are less complex and
therefore less costly to design and code than variable
capabilities, this plan allows government dollars to be spent
most efficiently.

• Branch and Merge Plan. This provides government control
over execution of development. The plan documents the
development strategy and assigns it to a Development
Branch or the Mainline, as well as planning the merge point
for Development Branches. Figure 7 shows a sample.

Figure 7 Sample Branch and Merge Plan

• Build Plan. This spans all baselines/configuration and
controls what functionality is in development and when it
will be delivered. It time-phases all requirements allocated to
software into the master build rhythm. Signature approval
ensures changes, associated rationale, and the impacts are
understood and approved by product users. See Figure 8.

Figure 8 Sample Build Plan
These three artifacts, taken together, broadly define the vast
majority of all of the work in the CSL and represent the
collaboration, cooperation, and compromise among all of the
cognizant stakeholders.
The government, representing all of the “consumers” of AEGIS,
has also instituted a cost-sharing approach to equitably allocate
the cost of fixing a defect under the “Fix it once!” paradigm. If a
program introduces an upgrade or new capability, it pays for it.
Other programs are free to pick it up, or not, as they wish, but
they pay for any testing that is required and unique to their
context. After a development is complete and time has elapsed,
newly found defects become difficult to associate with any one
program. In these cases all programs pitch in to pay to have the
defect corrected. Lockheed Martin gets a special funding account
to fix all defects, across the entire product line, that are not related
to unique capability content in development. Any program
receiving special development funding pays for defects in that
development, up to its demonstration milestone, at which point
the cost-sharing approach kicks in.

The external governance scheme outlined in this section was
crafted and put into place over the period of an entire year. It has
since been codified in an Instruction (the Navy equivalent of a
policy directive) signed by the Program Executive Office
Admiral.

The Navy feels that the underlying product line approach has
served the Navy and its partners well to this point. To date, this
governance structure has proven sufficiently flexible to adapt and
address any circumstances and scenarios arising that were not
explicitly foreseen.

7. Metrics
Metrics and measurements are as important for product line
efforts at least as much, if not more so, than for conventional
development projects [12]. AEGIS, like any large-scale software
and systems development effort, collects a broad set of
measurements and then monitors trends to identify hot spots of
concern.
A particular focus is to track and monitor defects of any kind,
especially requirements defects and code defects. They also track
whether defects tend to stay confined in one life cycle phase or
“leak” across and proliferate into other phases.
Carefully tracking defects and their resolution supports an
important product line goal of the AEGIS program, which they
characterize with the anthem of “Fix it once!”. Thorough
understanding of a defect allows the determination of how much
testing the fix must undergo. If every program uses the fix in a
common way, then testing the fix once time may suffice. If only
some of the programs use the fix in a common way, then those
programs can share the burden of testing it, even if the other
programs must test it for themselves. As we shall see in Section
8,“Fix it once!” accounts for some of the AEGIS program’s
remarkable cost savings results.
n 2013, a new kind of defect was added to the list of defects
tracked. A variation defect is unique to the product line
engineering paradigm. Under the approach that Lockheed Martin
employs for AEGIS [7], a variation defect can be

• an error in a feature model; for example, omitting a feature or
a flavor of a feature needed to capture a specific variation
among configurations.

• an error in a feature profile; that is, incorrectly making
feature choices that define a particular configuration. This
kind of error can erroneously place unwanted capability into
a configuration, put the wrong flavor of a particular
capability into the configuration, or incorrectly omit needed
capability from a configuration.

• an error in a shared asset’s variation point logic. This kind of
error incorrectly exercises a variation point in a shared asset
such as requirements or code, and causes an incorrect
instantiation of that asset to be produced for the product
undergoing a build.

Tracking and understanding variation defects has become very
important as AEGIS has joined navies of U.S. allies around the
world. Many AEGIS capabilities are under extremely strict export
control restrictions, and inadvertently putting the wrong capability
on a foreign ship comes with severe consequences. Towards this
end, Lockheed Martin and the Navy have instituted a formal
auditing procedure, underpinned by a strong variation
management discipline, that takes into account the product line
engineering paradigm in use and the possible nature of variation
defects to avoid [4].

Metrics that focus on defects are one of a class called “process
health” metrics. These metrics help Lockheed Martin understand
how well they are applying their chosen development processes in
the product line context. Defects are only one kind of process
health metric; another example is conformance to the specified
systems and software architectures.

By following measurement trends over time, the AEGIS program
is able to identify systemic problem areas. For example, a
component that consistently is involved with a high number of
defects may be an excellent candidate for re-design and re-

engineering. The AEGIS Engagement Manager (a component that
prioritizes threats and plans the tactical response) was one such
component. Showing up as a defect hot spot, the component, upon
examination, revealed unacceptably high complexity measures. It
was re-written, and is now a well-behaved plug-and-play
component.

8. Indicators of Success
Like all product lines, AEGIS has indicators of success to point to
the efficacy of its approach and, like all product lines, some are
quantitative and some are more experience-based.
Quantitatively:

• Prior to implementing product lines using CSL, every code
defect fixed in one program that had implications for other
programs had to be fixed multiple times. (Clone and own
never copies from a “perfect” system but always one in
development – hence, the defects are copied too!)
Eliminating the need to fix a defect in multiple libraries
provided substantial savings to the various government
program offices (AEGIS, LCS, FMS, MDA, Coast Guard).
The combined savings of product line versus clone and own
has totaled in excess of $80 million over the past 3 years.

• Requirements defects follow the same story, and bring
commensurate savings. Here the combined savings for all
government agencies totaled $39 million over the past 3
years.

• For testing, additional integration testing across multiple
programs (instead of one) added 40% in cost to the initial fix.
So that cost is gone as well.

Figure 9 CSL governance structure. “Baseline 9” refers to the current version of the CSL.

All of these measurements come from three years of actual cost
data that have remained relatively constant from year to year.

In addition to defect-fix savings, the approach brings savings in
new development as well. Developing an element upgrade for the
entire family seems to add, at most, about 10% to the cost of
development. This is much less than the cost of cloning and
adapting the upgrade (and then testing it) in each of several other
programs. This “design for releasability” as it’s called, is now
instilled in each developer’s mindset as part of an overall culture
change. People ask themselves “How am I going to design this so
it can be cleanly eliminated for a foreign ship?” or “How can I
‘vary out’ that capability?” Early data collection is trending
towards a 40-60% potential reduction in test cases required for
new development.

If a new program (or component or subsystem) is simply a new
combination of existing features then development cost goes to
zero – only testing is needed. The feature-based product line
approach in use requires only a new feature profile to be written to
describe the new member.
Program overhead is also reduced through elimination of
duplication – merged system engineering and test meetings, and
program management meetings, for example.
Finally, Lockheed Martin has been able to use the product line
approach and AEGIS success to win other proposals, a very
important indicator of success to a defense contractor in a time of
shrinking defense budgets.

9. Lessons Learned
AEGIS came to its current success by learning lessons, some of
them hard, and adjusting course to adapt. Below, we roughly
categorize the lessons as technical and organizational/social.
Technical lessons include the following.

• As emphasized in many product line case studies, the
systems and software architectures have played a large role
in the success of the product line. The architectures provide
the structure and set the scope and granularity of many of the
shared assets. The Navy’s Open Architecture push served as
an impetus to change the business model for AEGIS and
helped instill a culture to avoid configuration-unique
development.

• Establishing a product-line-wide thrice-yearly build rhythm
has been invaluable as an aid to planning and execution.
Engineers and Program Managers for both Lockheed Martin
and its customers know far in advance when builds will be
available and the content of those build enabling them to
conduct planning meetings to adjust content for near-term
builds and define new content for future builds.

• While every customer does not have to take every build, it is
important for customers not to get too far behind by waiting
too long between upgrades. Skipping too many builds tends
to result in large numbers of changes that can lead to
regression issues. Every customer is encouraged to “be an
active part of the family,” and stay engaged by periodically
building configurations to mitigate regression risk.

• Alignment of artifacts, especially requirements and software,
is extremely powerful. Under the product line approach of
Figure 4, shared assets are configured all at once using the
feature profile for the configuration being built, so feeding in
a ship’s feature profile results in a fully-aligned set of
requirements, code, and (coming soon) tests. These artifacts

are automatically consistent with each other because they are
derived from the same feature profile, so there is never a
concern about artifact mismatch. This consistency turns out
to be extremely useful in the process of auditing the contents
of a build to ensure that no proscribed content is included in
any of the artifacts.

Organizational and social lessons include the following.

• Lockheed Martin first tried to instill the product line
approach throughout the AEGIS program by senior
management fiat. Despite sincere management intent,
including a number of intense meetings in which the
technical leaders were asked one by one to say how they
were going to support the product line approach, the
paradigm shift was never completely fulfilled. People doing
the day-to-day work were allowed to drift back into
configuration-centric activities and mindsets. It was only
after re-organizations occurred that re-structured the
customer-specific teams (replacing them with smaller, leaner
product delivery teams) and moved the resources into
product-line-wide shared asset groups did the transition
finally find traction. In the language of [12], Lockheed
Martin did a good job launching the product line but the
institutionalizing was not fully successful until after
reorganization. This manifested itself during a delivery cycle
for one of the ships in which work was done under the new
approach but under the old organizational structure. The
delivery was eventually successful, but not without an
alarming amount of re-work.

• From the Navy side, the three-tiered governance scheme
(Technical, Programmatic, Strategic) has been successful,
but challenging. Products in this product line are typically
destined for ships or ballistic missile defense land-based
facilities. All are enormous and expensive, highly visible,
with a place on the national and international stage, and with
a very strong constituency. Pressures for customer-specific
development and scheduling are probably stronger in this
product line than in any other. Thus, external governance is
an ongoing exercise in hard-fought compromise.

• The difficulty of obtaining compromise is compounded by
the fact that the participants in the governance structure are
physically distributed, work for different organizations and
therefore have different priorities and loyalties, and tend to
advocate each for his or her own world view. Just to have a
meeting with everyone in physical attendance is
extraordinarily difficult, and so personal relationships of the
kind that lead to compromise are often hard to come by. This
stands in stark contrast to, for instance, a case study in [5] in
which the business unit managers had strong personal
commitments to one another, based on working for the same
company and living in the same close-knit town.

• “Build it once and fix it once!” has been a powerful central
theme of this product line, and has been an intuitive and
helpful aid to bring people on board with the idea quickly.

• The measures of success of the product line approach led to
centralized customer funding that reinforced the approach.

Perhaps the largest lesson to be taken from AEGIS is that the
product line approach works in this high-stakes high-visibility
environment. Successful interaction between the various customer
agencies and the development organization has brought about
careful (if challenging) and successful governance procedures to
support the product line approach. Governance is hard, but all

parties agree that the payoff of the product line approach is worth
meeting the challenge.

10. Summary
This paper has presented a comprehensive look at a large and
complex product line with national and international visibility.
We have focused on the governance structures and policies
needed to operate the product line successfully in an environment
of multiple and diverse customers, each with their own specific
functional and schedule needs that must be met while still
achieving overall affordability. To achieve these goals, Lockheed
Martin and the Navy have, in cooperation, put in place
development-side and customer-side governance policies.

On the development side, the salient aspects of governance
include

• an organizational structure, with roles and responsibilities
of the various players, based on the product line approach
and the system-of-systems (product line of product lines)
architecture of the AEGIS Weapon System;

• careful attention to metrics and measurements, to detect
trouble spots and ensure that the “factory” is working as
expected;

• a regular, predictable, three-times-a-year build schedule
for every member of the product line, with supporting
activities (such as the requirements review cycle) scheduled
to support the builds;

• a two-tier internal governance structure, comprising
program planning and program execution, both with a
product line perspective.

On the customer side, governance activities include:

• a three-tiered approach comprising technical,
programmatic, and strategic perspectives with a well-defined
flow of issues from one to the next;

• a small number of key planning artifacts (new development
fielding plan, branch and merge plan, and build plan) that,
together, define the vast majority of all of the work in the
CSL and are produced and maintained by stakeholder
consensus;

• a cost-sharing policy to pay for common defect fixes, which
follows from (but also helps to promote) the “Build it once,
fix it once!” theme of the product line.

11. What’s in Store for AEGIS?
The product line approach is growing within CSL and also across
the Navy where AEGIS is but one combat system.

Lockheed Martin is planning to add more shared assets to the
product line “factory” paradigm shown in Figure 4. There is more
to be done to add test artifacts to the mix, and design
specifications (for example, UML specifications using the
Rhapsody design tool) are on the short list of additions. Planning
documents, Statements of Work, basis of estimates reports, and
other program management artifacts are also being made common
for sharing.
The Navy, meanwhile, has an active effort under way to expand
the product line approach to the entire surface combat fleet (for
example, adding aircraft carriers and other non-AEGIS surface
combatants to the family). A common product line architecture is
under development and roll-out, which the Navy wants to use to

define a standard set of components. The architecture we very
briefly described in Section 2 is a compliant instance of that
architecture.

Both of these trajectories reinforce the confidence that the
respective parties have in the product line approach and the
substantial savings it brings about.

12. Acknowledgments
We are grateful to Angie Beach, Aaron Miller and Gary Maloche
of the U.S. Missile Defense Agency, who provided thorough and
helpful reviews.

13. References
[1] Bachmann, F., Clements, P., “Variability in Software

Product Lines,” Technical Report CMU/SEI-2005-TR-012,
Software Engineering Institute, 2005.

[2] BigLever Software, “BigLever Software’s Product Line
Engineering Solution,”
http://www.biglever.com/solution/solution.html

[3] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J., Winkler, A. “Second Generation
Product Line Engineering Takes Hold in the DoD,”
Crosstalk – The Journal of Defense Software Engineering,
vol. 27, no. 1, January/February 2014.

[4] Clements, P., Krueger, C., Shepherd, J., Winkler, A., “A
PLE-Based Auditing Method for Protecting Restricted
Content in Derived Products,” Proceedings SPLC 2013,
Tokyo, 2013.

[5] Clements, P., Northrop, L. Software Product Lines: Practices
and Patterns, Addison Wesley Longman, September 2001.

[6] Guertin, N., Clements, P. “Comparing Acquisition
Strategies: Open Architecture vs. Product Lines,” Proc.
Seventh Annual Acquisition Research Symposium, U.S.
Naval Postgraduate School, Monterey, California, 2010.

[7] Krueger, C., Clements, P. “Systems and Software Product
Line Engineering,” Encyclopedia of Software Engineering,
Philip A. LaPlante ed., Taylor and Francis, 2013.

[8] Naval Surface Warfare Center, “AEGIS Combat System,”
http://www.navsea.navy.mil/nswc/dahlgren/ET/AEGIS/defau
lt.aspx

[9] Office of the Deputy Under Secretary of Defense for
Acquisition and Technology. Systems and Software
Engineering. Systems Engineering Guide for Systems of
Systems, Version 1.0. Washington, DC: ODUSD(A&T)SSE,
2008. http://www.acq.osd.mil/sse/docs/SE-Guide-for-
SoS.pdf

[10] Program Executive Office for Integrated Warfare Systems,
“Surface Navy Combat Systems Development Strategy:
Acquisition Management Plan (AMP),” v5.4, 27 Oct 2008.

[11] Richardson, D., Murphy, A., Sheehan, T. “The Importance of
Systems Integration: System-of-Systems Enabler,” Journal
of the American Society of Naval Engineers, July 2008.

[12] Software Engineering Institute, “Framework for Product
Line Practice (Version 5.0)” http://www.sei.cmu.edu/
productlines/frame_report/index.html

