
Multistage Configuration Trees
for Managing Product Family Trees

Charles W. Krueger
BigLever Software

10500 Laurel Hill Cove
Austin, TX 78730 USA

+1-512-426-2227
ckrueger@biglever.com

ABSTRACT
It is not unusual for commercial product line organizations to
manufacture millions of product instances every year, in
thousands of different “flavors”. The scale and scope of
diversity in product lines of this size can be high, creating
significant challenges to engineers implementing the product
line, product marketers defining the space of available
products, and customers selecting from available products.
Companies often organize their products into a product
family tree to provide clarity about their product groupings
and offerings, better enabling their customers to effectively
navigate among the huge number of offerings and to
efficiently converge on a suitable product instance. This
paper describes a 2nd Generation Product Line Engineering
(2GPLE) feature modeling structure called a multistage
configuration tree that supports the engineering, deployment
and maintenance of complex product family trees. Feature
selections and downselections are incrementally staged
throughout the nodes in a product family tree. Feature
decisions made at any node are inherited by all descendants
of that node, thereby defining a product family subtree.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line
engineering, software product lines, feature modeling,
multistage configuration trees, product family trees.

General Terms
Design, Economics, Management, Measurement, Theory.

Keywords
Multistage Configuration, Staged Configuration, Product
Line Engineering, Product Family Tree, Systems and
Software Product Lines.

1. Introduction
In successful commercial product line organizations, the
number and diversity of products deployed can grow to be
extremely large, partially due to the efficiencies made
available from Systems and Software Product Line
Engineering (PLE) tools and methods. In market segments
ranging from industrial pumps to automobiles, it is not
unusual for companies to manufacture millions of product
instances every year, in thousands of different “flavors”.
The extreme scale and scope of diversity in product lines of
this size creates significant challenges to engineers
implementing the product line, product marketers defining
the space of available products, and customers selecting from
available products. To provide order and clarity about their
product groupings and offerings within this type of complex
product space, companies often organize their products into a
product family tree, thereby enabling their customers to
effectively navigate among the huge number of offerings and
to efficiently converge on a suitable product instance.
For example, an automotive manufacturer might
hierarchically structure their entire product line portfolio with
millions of instances into a family tree with 5 levels:

• Platforms. A platform is a family of vehicles of similar
size and structure that can be manufactured in the same
assembly plant. Examples might be pickup trucks, large
sedans, and small coupes.

• Programs. A program is subfamily of vehicles within a
single platform, known by consumers as the “model” and
often found in nameplate display on the back of the
vehicle .

• Regional programs. A regional program is a subfamily
of vehicles within a single program, manufactured for the
legislative, geographic, climate, cultural, and marketing
characteristics of a particular country.

• Trim levels. A trim level is a subfamily of vehicles within
a single regional program, representing different tiers of
capabilities, accessories, and associated cost. Trim levels
are marketed using terms such as base, standard, and
luxury.

• Vehicle instances. A vehicle instance is a subfamily
member within a single regional program trim level.
Characteristics of a vehicle instance are determined by the
consumer-selectable options available on a particular trim
level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

SPLC 2013, August 26 - 30 2013, Tokyo, Japan
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-1968-3/13/08…$15.00.
http://dx.doi.org/10.1145/2491627.2491648

In contrast to the way that the PLE community traditionally
focuses on techniques for selecting and solving for features
on a particular product instance, product line organization
with large family trees expend most of their effort
determining which features will not be available within a
subfamily. As an engineering leader within one such
automotive manufacturing organization described it, “we are
more focused on identifying the features that we don’t want
on a particular platform, program or trim package, than we
are on specifying the features we want configured on any
particular product instance.”
To address this need for managing the feature modeling
structure within a product family tree, we have designed,
implemented and deployed into commercial practice a
technology and methodology referred to as multistage
configuration trees in the BigLever Software Gears 2GPLE
tool and lifecycle framework[1][2]. Multistage configuration
trees extend the PLE concepts and constructs of featuring
modeling[3] and staged configuration[4] to support the
engineering and deployment of systems and software product
line engineering assets for product lines with complex
product family trees[5].
In 2GPLE terminology, a feature model declares the full
collection of feature choices available in a product line and a
feature profile defines the fully bound collection of feature
choices made for a particular product instance in the product
line. In multistage configuration trees, the feature model
serves as the root of the tree and fully bound feature profiles
are found at the leaves of the tree. Partially bound feature
profiles, where some feature decisions have been made or
restricted and other feature choices remain available, are
present either as internal or leaf nodes of the tree.
One of the central properties of multistage configuration
trees is that any connected path from the root node to a leaf
node must be a monotonically decreasing (i.e., monotonically
not increasing) sequence in the space of available feature
choices. That is, children must honor the feature decisions
made by their ancestors and may optionally decide to make
additional feature decisions that further constrain the space of
available feature choices. The monotonically decreasing
property of multistage configuration trees assures that each
node in a tree defines a subfamily, where all descendants of a
node inherit the feature decisions from that node and its
ancestors.
The addition of multistage configuration trees into 2GPLE,
in order to better manage the engineering and deployment of
an organization’s product family tree, introduces new
challenges and opportunities which are discussed throughout
the remainder of this paper. These include the use of partial
profiles to perform partial configuration of assets, managing
the evolution of multistage configuration trees, recursive
application of multistage configuration trees in hierarchical
product lines, and tool automation to support and enforce
monotonically decreasing feature spaces.

2. Multistage Configuration Trees
Multistage configuration trees1 comprises three kinds of
models:

• Feature models are located only at the root of the tree. As
with conventional 2GPLE, a feature model declares the
full collection of feature choices available in a product
line.

• Feature profiles, or fully bound feature profiles, are
located only at leaves of the tree. Just like conventional
2GPLE, a feature profile defines the fully bound
collection of feature choices made for a particular product
instance in the product line. Feature profiles never have
children in a multistage configuration tree since no further
refinements or feature choices are possible.

• Partial profiles, or partially bound feature profiles, are
found at internal nodes and leaves of the tree. Partial
profiles are a special kind of profile, where you can bind
some feature decisions (as in a conventional feature
profile), partially restrict the available choices some
feature, and explicitly leave other feature choices
unbound.

Note that the root feature model in a multistage configuration
tree is a degenerate case of a partial profile with no decisions
made. A leaf feature profile is another degenerate case of a
partial profile with all decisions made.

2.1. Partial Profiles
A partial profile is more than just a partially filled out feature
profile. There are special modeling constructs and semantics
associated with the feature decisions that remain unbound.
In a conventional fully bound profile, there are two states for
each feature decision, undefined and defined. Undefined
means that the modeler has not made a decision about a
feature, while defined means that the choice for a feature is
fully defined.
For partial profiles, there is a third state possible for any
feature, unbound. Unbound means that the modeler has
explicitly made their decision to leave this decision open, so
that other descendants in the multistage configuration tree
can make their own – possibly different in different
subfamilies – decision about this feature choice.
For feature choices in an unbound state, it is also possible to
restrict the space of candidate feature selections through
downselection. Downselection reduces the available diversity
for a feature, while still leaving some diversity open in the
unbound decision.
The semantics of downselection on the feature types in a
feature model will obviously depend on the feature modeling
language. In this paper, we focus on the feature model
language and semantics of the Gears PLE Lifecycle
Framework from BigLever Software. Following are
examples of downselection on the discrete feature types in
Gears, enumerations, sets, and booleans.

1 Patent pending

• Enumerations. An enumeration is a feature with a
discrete, enumerated set of member choices. One and only
one member is selected to define an enumeration feature
choice.
Downselection in an enumeration type feature means
removing one or more of the members from
consideration. A downselected member can never be
chosen as the value for that enumeration.

• Sets. A set is a feature with a discrete, enumerated set of
member choices. Zero or more members are selected to
define a set feature choice.
Downselection in a set type feature means removing one
or more of the members from consideration. A
downselected member can never be chosen as a member
of the full bound value for that set.
Inverse to downselection, it is also possible to partially
select some of the set members prior to fully defining the
value for that feature. A selected member must always be
chosen as a member of the fully bound value for that set.

• Booleans. A boolean feature is simply a special case of an
enumeration, with two members: true and false. Since
downselection of one of its members would fully
determine the value of a boolean, downselection is neither
needed nor supported on boolean type features.

Figure 1 shows an example of a downselection for an
enumeration feature type. As indicated visually by the red
strikethrough, the DualZone member of the unbound
ZoneType enumeration feature in a partial profile has been
downselected and no longer available for inclusion in partial
or fully bound profiles in descendants in a multistage
configuration tree.

Figure 1. Unbound Enumeration with Downselection

Figure 2 shows an example of a downselection for a set
feature type. As indicated visually by the red strikethrough,
the Attitude member of the unbound DualZone set feature in
a partial profile has been downselected and no longer
available for inclusion in partial or fully bound profiles in
descendants in a multistage configuration tree.

Figure 2. Unbound Set with Downselection

2.2. Inheritance Rules
The partial profiles and fully bound profiles in a multistage
configuration tree are governed by inheritance rules. Feature
selections and downselections made at any node in a
multistage tree are inherited by all descendants of that node,
thereby defining a product family subtree.
The feature decisions – selections, downselections and
transitions from unbound to defined – along any connected
path from the root node to a leaf node in a multistage
configuration tree must be monotonically decreasing. Child
profiles inherit and may not override the feature decisions
made by their parents and ancestors on the path to the root.
Child profiles may optionally decide to make additional
feature decisions that further constrain and define the space
of available feature choices.
Any profile that defines all remaining unbound feature
choices becomes a leaf profile in its multistage binding tree.
In theory, a fully defined profile could have a monotonically
decreasing child that was identical, but this redundancy
serves no purpose, so we disallow fully bound feature
profiles from having children.
The monotonically decreasing property of multistage
configuration trees assures that each node in a profile tree
defines a subfamily of partially bound and fully bound
profiles. Within a subfamily all descendant of a profile node
inherit the feature decisions from that node and its ancestors.
These inherited feature decisions determine the commonality
of shared feature decisions within the subfamily.
Figure 3 shows a multistage configuration tree for managing
a simple HomeClimateControl system in the Gears
production line browser. The root of the tree – the feature
model – is the second item in the list, labeled Features. There
are two child partial profiles of the root, Automatic and
Manual, that contain subfamilies for automated home climate
control systems and for manually controlled home climate
control systems. Within the Automatic family, there are three
child members that are fully defined feature profiles:
AutoDualAllHeatCool , AutoTriZoneHeatCool and
NewPrototype. Similarly, the Manual family has two child
members.

Figure 3. Multistage Configuration Tree for
HomeClimateControl

Figures 4, 5, and 6 show a monotonically decreasing path in
the multistage configuration tree in Figure 3, starting from
the root Feature model in Figure 4, to the Automatic partial
profile in Figure 5, to the leaf feature profile
AutoDualAllHeatCool in Figure 6.
The feature decision of Auto for the SystemType enumeration
in the partial profile in Figure 5 is inherited by the child
profile in Figure 6, where the SystemType feature and its
decision radio button are grayed out to indicate that the
decision cannot be changed in the child profile due to the
inheritance rules. The Automatic subfamily tree defined by
the partial profile in Figure 5, leaves the decisions about
ZoneType and HVACType fully unbound, so the full
combinatoric space of possibilities from those two features is
available in the subfamily.
The AutoDualAllHeatCool profile shown in Figure 6 fully
binds all of the feature decisions left unbound in its parent.
Therefore, this profile becomes a fully bound leaf node in the
tree.

3. Product Line Scoping Revisited
Conventional wisdom from the product line engineering
literature makes a good argument that when the available
feature diversity within a product line is high and the
commonality is low, the benefits of leveraging the small
amount of commonality during the engineering process may
be negated by the overhead of managing the variability. In
these cases, the conventional guidance is to split the product
line into multiple, smaller and more internally cohesive
product lines that each possess higher ratios of commonality
to variability[6].
The drawback of this approach is that after a product line is
split into smaller and more cohesive families, these
subfamilies become silos that can no longer take disciplined
advantage of any commonality that exists among them. It
suffers from the classic clone-and-own problem, but in this
case for entire product families.
Multistage configuration trees offer an alternative to splitting
large and diverse product families into multiple internally
cohesive but isolated subfamilies. By keeping the multiple
families organized in a multistage configuration tree,
cohesive subfamilies can be grouped into subtrees within the
same tree.

The multistage subtrees provide the cohesiveness and lower
diversity of the smaller subfamilies through appropriate
selections, downselections and unbound states in their
parents and ancestors in the multistage configuration tree.
The commonality among the diverse subfamilies, no matter
how large or small, is shared from the common ancestor
nodes on the path to the root, thereby avoiding the need to
split into independent subfamilies and become divergent
through clone-and-own. The benefits become clearly evident
in very large product families, where decisions or changes
made at higher levels in a multistage configuration tree are
inherited by hundreds, thousands, or even millions of
subfamilies and product instances.

4. Multistage Configuration Trees for
Hierarchical Product Line Families

A core characteristic of 2GPLE is hierarchical product lines –
the capability to hierarchically compose larger product lines
from a collection of smaller product lines[3]. This is
analogous to building a system-of-systems in one-of-a-kind
systems engineering, but in this case each system and
subsystem is a product line. The result is a product-line-of-
product-lines. Multistage configuration trees can also be
applied to managing the configuration of these hierarchical
product line families.
The application of multistage configuration trees that we’ve
discussed thus far in this paper have been applied within the
context of a single product line, to structure subfamilies and
family members within the product line. Hierarchical product
lines introduce another mechanism to define a larger
granularity product family, but in this case the family is
defined in terms of variant assemblies of the different
“flavors” offered by each of the composite product lines in
the product line hierarchy. In commercial PLE practice, we
are finding that multistage configuration trees applied to
hierarchical product line families is essential in managing
very large product lines of this form, such a automobiles
which are comprised of approximately one thousand
hierarchical subsystems.
At this point, we now have put four hierarchies into play.

• feature model trees for a product line
• multistage configuration trees applied to feature profiles

for a product line
• product-line-of-product-line trees
• multistage configuration trees applied to hierarchical

product line assemblies.
Fortunately, adding the last item to the list and as another
hierarchy to the product line methodology is simpler than it
might seem. The following example illustrates how
multistage configuration trees help significantly with
hierarchical product line families.
Starting with our previous example of the Home Climate
Control system, we add two more product lines, Home
Security with different capabilities for intruder detection and
alerts, plus Home Fire Protection with different capabilities
for fire detection, alerts and suppression. Each of these three
product lines is offered in different configurations of features,
similar to the product offerings shown for our home climate
control system shown in Figure 3.

Figure 4. Feature Model

Figure 5. Automatic Partial Profile

Figure 6. AutoDualAllHeatCool Fully Defined Feature Profile

To create the product line hierarchy for this example, these
three product lines are composed into a larger product line
called Home Automation. Figure 7 illustrate this product line
hierarchy in Gears. HomeAutomation is the root product line
and HomeClimateControl, HomeFireProduction, and
HomeSecurity are nested product lines, indicating their
composition in the higher level HomeAutomation product
line.

Figure 7. HomeAutomation Hierarchical Production Line

A product marketing role can now define the Home
Automation products that will be offered to the market by
enumerating them in a product Matrix. As illustrated in the
matrix in Figure 8, the products are branded under the name
of ComfortHome, with model numbers such CH10 and
CH55.
Each product offering at the Home Automation level is
defined as a named product row in the matrix. The columns
correspond to the nested product lines and the values selected
for each cell in a row are selected from the products offered
in each of the nested product lines. For example, in the
HomeClimateControl column you will recognize the product
offerings we defined in Figure 3 and Figures 4 through 6.
The drawback of the management of the product line
hierarchy in this monolithic listing is the same as the
drawback discussed in the first part of this paper for
managing a single product line as a monolithic collection of
feature profiles. Particularly as the product line gets very
large and the list of products in the product matrix gets very
long, it becomes difficult to express and decipher the families
and subfamilies within the space.
For example, in Figure 8, the ComfortHome product line is
divided into 3 cohesive subfamilies for marketing purposes,
but the only hint of these subfamilies is a weak naming
convention in the left column: 10’s, 20’s and 50’s. From the
perspective of product marketing, of engineering, and of the

consumer, there is no clear way to see or take advantage of
the commonalities and better manage the variabilities within
this product space.
Applying multistage configuration trees to the definition of
hierarchical product lines addresses this deficiency.
Figure 9 shows a multistage configuration tree of matrices in
Gears, analogous to the multistage configuration tree of
feature profiles shown in Figure 3. Each of the named “grid”
icons corresponds to a single-row matrix, similar to Figure 8.
The root matrix, ComfortHome, will have no decisions
bound, analogous to a feature model. The three child
matrices below the root, Base, Mid, and Deluxe group
subfamilies and define selections, downselections in their
respective matrices that are inherited by all descendants in
the subfamily. The fully bound models, such as CH10 and
CH55, are at the leaves of the tree and contain fully bound
matrix rows.
Note the small ‘T’ on some of the matrix icons. This
indicates a partially matrix, meaning that the matrix is a
template that contains unbound decisions. Fully bound
matrices with all decisions made are shown as grid icons
without a ‘T’. Following the same inheritance rules as in
multistage configuration trees for feature profiles, partial
matrices will be be found at internal nodes or leaves in the
tree, while fully bound matrices will be found only as leaves
in the tree, with no children.

Figure 9. Multistage Configuration Tree for the
HomeAutomation Family

Figure 8. Home Automation Product Definitions in a Matrix of Nested Product Lines

Figures 10, 12 and 15 show a monotonically decreasing path
in the multistage configuration tree from Figure 9. Figures
11, 13 and 14 show intermediate states using Gears to create
and edit this multistage configuration tree.
Starting with the ComfortHome root matrix in Figure 10, all
of the decisions remain unbound as seen in the matrix cells
for each of the nested product line columns.
Moving to Figure 11, the Mid partially bound matrix, the
pulldown menu shows the available offerings from the nested
HomeClimateControl product line. The selection being made
is the Automatic subfamily of HomeClimateControl, which
will limit future selection in the descendants of the Mid
subfamily to only come from the Automatic subfamily of
HomeClimateControl. This illustrates an interplay between
the multistage configuration tree of the overarching
HomeAutomation product line and its subordinate
HomeClimateControl product line. Figure 12 shows the end
result after making the Automatic selection.
Downselections in a partially bound matrix eliminate certain
choices that are being offered from the nested product lines.
Figure 13 shows the downselections that have been set on the
Mid partially bound matrix. The intent of the product
marketing role who set these downselections is to express
that the midrange products in the product subfamily are
constrained to never select from these downselected
offerings. For example, in the center downselection dialog
for HomeFireProtection in Figure 13, two choices have been
eliminated for all descendants in the Mid subfamily.
Removing the $omitted$ option means that every Mid
subfamily member must select one of the available
HomeFireProduction options. That is, every Mid product
member must provide some form of home fire protection.
Moving to the multistage configuration tree leaf CH22, a
fully bound matrix definition, decisions inherited from the
Mid parent can be seen in Figure 14. Because the Automatic
subfamily from HomeClimateControl was selected in Figure
11, none of the Manual options are available. Furthermore,
the $omitted$ and the AutoTriZoneHeatCool choices were
downselected in Figure 13, so they are not available in the
Figure 14 selectable options for the CH22 product.
Figure 15 shows the final result of the fully bound CH22 leaf
in the multistage configuration tree.

5. Evolution of Multistage Configuration
Trees

Just like feature models, feature profiles, product profiles,
PLE assets, variation points and other constructs in an
operational product line, multistage configuration trees are
subject to constant evolution to support the ongoing
evolution of a product line. Whenever changes are made on
the multistage configuration tree constructs in feature
models, feature profiles, or matrices, the implications must
be considered and propagated across the full multistage
configuration tree. As a reminder, the new constructs that
have been introduced are:

• unbound states on feature choices and matrix choices
• partial selections in partially bound profiles and matrices
• downselections in partially bound profiles and matrices

Fortunately the inheritance rules in multistage configuration
trees provide clear semantics and guidance, as well as
opportunity for automated impact analysis and support for
interactive refactoring on widespread changes.
The evolutionary changes that need to be supported fall into
two categories: reducing the space of variability in a
multistage configuration subfamily by constraining available
choices and expanding the space of variability in a multistage
configuration subfamily by relaxing available choices.

5.1. Evolution when reducing the space of
variability in a multistage configuration tree

The changes that will reduce the space of variability in a
multistage configuration tree are:

• changing the state of feature or matrix choice from
unbound to a partially or fully bound selection

• changing a feature or matrix choice from partially bound
to fully bound

• applying additional selections in a partially bound feature
or matrix choice

• applying a downselection to a feature or matrix choice
These changes that reduce the space of variability must
conform to the inheritance rules and selections of the
ancestors. If the change is made within an internal node in a
multistage configuration tree, these tighter constraints need
to be propagated down to the descendants in the subfamily.
Because the change is narrowing the space of possible
variability, some new decisions can be automatically
determined and some existing decisions within the subfamily
may become invalid, Therefore, automated propagation,
semantic checking, and reporting is crucial.
At the time of this writing, Gears’ propagation of reduced
variability is fully automatic for cases where the original
value of the ancestor and descendant are identical. In cases
where the ancestor and descendant values are different, the
propagation operation will leave the descendant’s value
unchanged and rely on semantic checks to report those
descendants that no longer satisfy the monotonic decreasing
property.
An upcoming release of Gears is planned to support an
interactive option, where the user can incrementally resolve
each violation detected during the top-down propagation
operation. Any changes made by the user to a node in the
multistage configuration tree will recursively invoke the
propagation from that updated node, rather than to continue
propagating the value from the original ancestor.

5.2. Evolution when expanding the space of
variability in a multistage configuration tree

The changes that will expand the space of variability in a
multistage configuration tree are:

• changing the state of feature or matrix choice from a fully
bound to a partially bound or unbound selection

• changing the state of a feature or matrix choice from a
partially bound selection to unbound

• reducing selections in a partially bound feature or matrix
choice

• removing a downselection on a feature or matrix choice

Figure 10. Root of the ComfortHome Multistage Configuration Tree

Figure 11. Selecting the Automatic HomeClimateControl Subfamily for the Mid Partially Bound Matrix

Figure 12. The Mid Partially Bound Matrix

 HomeClimateControl HomeFireProtection HomeSecurity

Figure 13. The Mid Downselections

Figure 14. Selecting the AutoDualAllHeatCool HomeClimateControl for the CH22 Fully Bound Matrix

Figure 15. The CH22 Fully Bound Matrix

These changes that expand the space of variability must
conform to the inheritance rules and selections of the
ancestors. If the change is made within an internal node in a
multistage configuration tree, the modeler might want the
weaker constraints to be propagated down to the descendants
in the subfamily. However, because the change is relaxing the
space of possible variability, propagation is optional since
none of the decisions within the subfamily will become
invalid. Automated propagation would require human or
heuristic guidance on how to deterministically relax existing
choices within the subtree.
At the time of this writing, this support has not yet been
implemented in Gears’ multistage configuration trees.

6. Partial Configuration of PLE Assets
Supporting partially bound feature profiles and partially
bound matrices as semantically valid constructs in a
multistage configuration tree opens the possibility of doing
partial configuration of PLE assets. Automated product
configuration in 2GPLE is enabled by variation points in the
PLE assets that define the mapping from feature selections in
feature profiles to the configuration of some encapsulated
feature-based diversity in the the asset[3].
There are three conditions to consider for a variation point
when performing partial configuration based on partial
profiles.

• If all feature values referenced by the variation point
mapping logic are fully defined, then the variation point
can be fully configured.

• If none of the feature values referenced by the variation
point are defined, then the variation point remains
unchanged in the configured asset.

• If some but not all of the feature values referenced by the
variation point are fully defined, reduction on the
mapping logic is required.

• In some cases the reduction will fully resolve the
mapping, in which case the variation point
configuration can be completed.

• In some cases, the reduction will leave the mapping
unchanged, in which case the variation remains
unchanged in the configured asset.

• In some cases the mapping can be reduced to a
simpler form, but the mapping cannot be fully
resolved, in which case the variation remains in the
configured asset with the simplified form of the
mapping logic.

Fully bound matrices and profiles at the leaves of a
multistage configuration tree are used to automatically
configure assets for product instances. The need and the
value of this is clear. Partially bound matrices and profiles in
a multistage configuration tree can be used to automatically
configure partially bound assets for product subfamilies.
What is the meaning, need and value of this?
The answer will vary based on the asset type and how an
organization uses the asset types in their engineering and
business processes.
For example, partial configuration of source code that
doesn’t compile may not be of much interest. However,

inspecting a partially configured set of requirements for a
subfamily of low-end products and comparing that to a
subfamily of high-end products could offer valuable insights
about the common and variant properties of those two
subfamilies. Unexpected content in the requirements for a
subfamily might lead to a refinement in the definition of the
product family feature profiles or matrix profiles, or it might
indicate a defective mapping for a variation point that needs
to be fixed.

7. Related Work
Staged configuration was introduced by Czarnecki, Helsen,
and Eisenecker as a means of distributing the process for
specify a feature model configuration among multiple roles
across an extended timeline and workflow[4]. This concept
has been formally modeled and enhanced in subsequent
studies, including [7, 8, 9].
The focus of these studies is on how to support the sequential
configuration of a feature model as it is handed off from one
role to another during different stages of a business or
engineering workflow. Multistage binding trees similarly
enable incremental staging of feature selections along a
branch in a multistage configuration tree, but they are
intended for the organization of large, multi-level product
line subfamilies, where staging across multiple roles or
across workflows with extended timelines does not apply.
Multi-level subfamilies within a multistage configuration tree
are often engineered by a single individual or small team.
Multistage configuration trees are intended to support
concurrent development by different roles on parallel
branches rather than sequential development by different
roles along a single branch.
Reiser introduced the notion of product sublines in his PhD
thesis[10]. His definition of a subline is based on product line
scope subset, which is the equivalent to the definition of
subfamilies in multistage configuration trees as being
monotonic decreasing in variability relative to their
ancestors. Reiser’s work on sublines focuses on the
hierarchical structure and staged configuration of assets
rather than feature models or product profile models.
Multistage configuration tree methods, on the other hand,
focuses on the feature models and feature-based product
models for a product line. With multistage configuration
trees, the approach for deriving assets associated with any
node in a multistage configuration tree is to apply 2GPLE
automated configuration to the source repository of fully
non-configured PLE asset supersets, using any partially
bound or fully bound profile from a multistage configuration
tree, as described in Section 6.
Elsner explored how staged configuration could be applied to
the derivation of assets in a heterogeneous composition of
multiple product lines (what 2GPLE refers to as hierarchical
product lines)[11]. His work adheres to the seminal definition
of staged configuration as a sequential and incremental
configuration, distributed over roles and time[4]. Although
this work does accommodate the need for the composition of
a product-lines-of-product lines, we have shown the richer
need and solutions for distinct support of multistage
configuration trees within both a single product line and
across the composition structures in a product-line-of-
product-lines composition.

8. Future Work
As discussed in Section 5, Evolution of Multistage
Configuration Trees, the inheritance rules in multistage
configuration trees allow changes made close to the root of a
multistage configuration tree to be propagated throughout all
of the descendant subfamilies and family members. The
benefit is that a single change to an ancestor node might be
easily propagated to hundreds, thousands or millions of
subtrees and instances. Of course, as would be affirmed by
anyone who has worked to deliver products in a product line
organization, this is also an opportunity for errors and
unintended consequences.
Tools and techniques need to be identified that will provided
detailed impact analysis and to also support human-guided
propagation of changes. An example of the latter include
marking nodes that require propagation, but allowing the
owners of these subfamilies to respond lazily when they have
the time, the resources and the need to do so.
Another alternative would be in the style of code refactoring
tools, where the intent of a change could be declared before it
was made, so that the tool could both perform the intended
change (such as removing a downselection with the intent to
also relax all compatible descendants), and then also guide
the engineer with specific rationale in the refactoring at each
of the candidate update sites during the propagation
throughout the descendant subfamilies and family members.
The use of multistage configuration trees in commercial
practice is relatively new, though the early experience with
large scale product line organizations has strongly positive
and is creating enthusiastic early adopters. The demand and
opportunities for the industry to benefit from multistage
configuration trees appear to be high as we introduce this
new concept across a broad range of industry analysts, trade
publications editors, and our existing and new customer
organizations.
We anticipate that over time patterns, styles and scenarios of
use will emerge. An early example of a common usage
scenario that exposed a conceptual and tooling need was in
the pattern of a user traversing up and down a multistage
configuration tree, attempting to visualize and comprehend
the monotonically decreasing selections and downselections
for an individual feature along the path from the root of the
family or subfamily tree to a descendant subfamily or
individual product. We plan to capture pattens like this and
reflect them back into the Gears tool, as well as to the PLE
community as lessons learned and as best (and worst)
practices.

References
[1] BigLever Software, “BigLever Software Gears,” http://

www.biglever.com/solution/product.html
[2] Krueger, C. and Clements, P. “Systems and Software

Product Line Engineering,” Encyclopedia of Software
Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013, in publication.

[3] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson,
A. “Feature-Oriented Domain Analysis (FODA)
Feasibility Study” (CMU/SEI-90-TR-021,
ADA235785). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1990.

[4] Czarnecki, K., Helsen, S., Eisenecker, U. “Staged
Configuration Using Feature Models”, Proceedings of
the 2004 Software Product Line Conference (SPLC),
Boston, MA, USA, August 2004.

[5] Flores, R., Krueger, C., Clements, P. “Mega-Scale
Product Line Engineering at General Motors,”
Proceedings of the 2012 Software Product Line
Conference (SPLC), Salvador Brazil, August 2012.

[6] Clements, P., Northrop, L. Software Product Lines:
Practices and Patterns, Sec 5.5, Addison-Wesley, 2002.

[7] Hubaux, A., Classen, A., Heymans, P. “Formal
modelling of feature configuration workflows”,
Proceedings of the 13th International Software Product
Line Conference (SPLC), pages 221-230, San
Francisco, CA, USA, August 2009.

[8] Bagheri, E., Di Noia, T., Gasevic, D., Ragone, A.
“Formalizing interactive staged feature model
configuration,” Journal of Software: Evolution and
Process, Volume 24, Issue 4, pages 375–400, John
Wiley & Sons, 2012.

[9] Schroeter, J., Lochau, M., Winkelmann, T. “Multi-
perspectives on Feature Models”, Proceedings of the
15th International Conference on Model Driven
Engineering Languages and Systems, pages 252-268,
Innsbruck/AUSTRIA, September 2012.

[10] Reiser, Mark-Oliver, “Managing Complex Variability in
Automotive Software Product Lines with Subscoping
and Configuration Links”, PhD thesis, Technische
Universität Berlin, December 2008.

[11] Elsner, Christoph, “Automating Staged Product
Derivation for Heterogeneous Multi–Product-Lines”,
PhD thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg, 2012.

http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html
http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html
http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html
http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html

