
The More You Do, the More You Save:
The Superlinear Cost Avoidance Effect of

Systems Product Line Engineering

Susan P. Gregg
Rick Scharadin
Lockheed Martin

199 Borton Landing Road
Moorestown, New Jersey 08057 USA

+1 609 326 4685
susan.p.gregg@lmco.com

richard.w.scharadin@lmco.com

Paul Clements
BigLever Software

10500 Laurel Hill Cove
Austin, Texas 78730 USA

+1 512 426 2227
pclements@biglever.com

ABSTRACT
Product lines that use automated tools to configure shared assets
(e.g., software or requirements or test cases or user
documentation) based on product descriptions have long been
known to bring about substantial development cost avoidance
when compared to clone-and-own or product-specific
development techniques. Now, however, it can be shown that the
cost avoidance for configuring multiple shared assets is
superlinear – that is, the overall cost avoidance exceeds the sum
of the that brought about by working with each of the shared
assets in isolation. That is, a product line that configures (for
example) requirements and code will avoid more cost than the
sum of code-based plus requirements-based cost avoidance. In
addition, we also observe a superlinear effect in terms of the
number of products in the portfolio as well. This paper explores
why these effects occur, and presents analytical and empirical
evidence for their existence from one of the largest and most
successful product lines in the literature, the AEGIS Weapon
System. The result may lead to new insight into the economics of
product line engineering in the systems engineering realm.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line engineering,
software product lines, feature modeling

General Terms
Management, Design, Economics.

Keywords
Product line engineering, product line economics, systems and
software product lines, product line measurement, feature
modeling, variation points, product configurator, product

derivation, second generation product line engineering, AEGIS.

1. Introduction
Conventional product line engineering (PLE) economic models
count savings as a linear function of the number of products in the
product line (e.g. [11]) or as the savings from reuse over the entire
product line minus the costs of reuse over the entire product line
(e.g., [3]).

However, recent evidence suggests that reality is more nuanced
than that. We are measuring cost avoidance associated with each
new product added to the product line over and above that
product’s contributed cost avoidance as an arbitrary member of
the product line. In other words, the cost avoidance from a newly-
added product are more than that from the product last added (all
other things being equal).

In addition, there seems to be measurable economies associated
with adding new kinds of shared engineering assets (e.g.,
requirements, code, tests, etc.) to the product line over and above
the economies each asset would bring by itself.

Thus, we are observing additional cost avoidance brought about as
a result of growing the product line in either (or both) of the
product dimensions and the lifecycle phase dimensions. We call
this effect superlinear cost avoidance, because it exceeds the cost
avoidance predicted by the linear cost models that, until now,
have been posited in product line economics work.

This paper describes the superlinear cost avoidance effect that is
being observed on the AEGIS Weapon System product line, gives
analytical evidence that suggests why these superlinear economies
are occurring, and provides empirical evidence for their existence.

2. Linear-cost product line economic models
Weiss and Lai posited a simple but useful model of product line
economics in 1999 [11] (Figure 1). The model shows that one-at-
a-time product development costs grow cumulatively at a faster
rate than product-line-based development costs, after an up-front
investment to build the product line’s reusable assets. It seems fair
to say that the model’s intent was to convey an intuitive rather
than an empirically accurate picture of product line economics,
but it is instructive to note that (assuming the products in the
product line are roughly comparable to each other in size and
complexity) both cost curves are linear. This means that the cost

(c) 2015 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SPLC 2015, July 20 - 24, 2015, Nashville, TN, US.

A Copyright is held by the owner/author(s).

Publication rights licensed to ACM. ACM 978-1-4503-3613-
0/15/07…$15.00

of developing the nth product, under either paradigm, is roughly
the same as developing the first, or the 20th, or the 100th.

Figure 1 Early product line economic model of Weiss and Lai

Another useful comparison point is the Structured Intuitive Model
for Product Line Economics (SIMPLE) [3]. SIMPLE is an
economic model for product lines intended to aid in building a
business case by providing helpful formulas for calculating true
costs and benefits. The cost of a product line development,
according to the SIMPLE model, is the sum of:

• Corg, the cost of changing the organization to carry out
the product line approach instead of silo-based one-at-a-
time development

• CCAB, the cost of building the shared assets or “core
asset base”

• Creuse, the cost of using the shared assets on each
product

• Cunique, the cost of carrying out product-specific
activities

Figure 2 illustrates a basic SIMPLE formula for the development
cost of a product line [4].

Figure 2 SIMPLE formula for the cost of developing a

product line

SIMPLE does away with the assumption that each product costs
approximately the same – modelers are free to fill in values for
Cunique and Creuse for each product independently – but SIMPLE
provides no predictive support and no hint that these costs are a
function of i itself.
Our purpose is not to criticize these models, but rather to suggest
that the effect we report here is previously unobserved.

3. What is the superlinear cost avoidance
effect?
We show that the development cost for a product in a product line
is, all other things being equal, a function of when the product is
added. As the portfolio grows the cumulative cost grows at a
slower rate and therefore cost avoidance grows at a faster rate as
the portfolio increases in size.

In addition, we posit that economies from adding new kinds of
shared assets to the product line also produce this superlinear
effect. To see what we mean, suppose the product line begins by
including software code (and only software code) in its stable of
shared assets. There will be a cost avoidance induced by the
product line approach for this “software-only” product line.
Suppose that, in a parallel world, the product line had begun with
requirements (and only requirements). There would likewise be a
cost avoidance induced by the product line approach for this
“requirements-only” product line. Now suppose the project
includes both requirements and code in its product line; our thesis
(and observation) is that the cost avoidance observed exceed the
sum of the individual amounts, and that this effect continues the
more we add shared assets to the product line.
We give the name superlinear cost avoidance to these
observations, because a graph of the cumulative cost avoidance
over the number of products or the number of shared asset types
involved is not a line with constant slope, but rather a line with
increasing slope.

To elaborate on the different ways in which this effect is being
observed, we turn to Figure 3, which lays out three areas of
concern or “dimensions” of product line engineering. The multi-
product dimension is concerned with the simultaneous
development and production of multiple products across the
portfolio. The multi-phase dimension is concerned with the
various kinds of shared assets that can be configured to support
the product line (the figure shows four examples: requirements,
design models, code, and test cases). The multi-baseline
dimension is concerned with evolving the product line (the
products and the shared assets used to build them) over time.

Figure 3 Three dimensions of product line engineering.

(Figure © BigLever Software, Inc.)

To summarize, in the AEGIS Weapon System product line we are
observing the superlinear cost avoidance effect in the multi-
product and multi-phase dimensions of PLE.

4. What is AEGIS?
The AEGIS Combat System is a highly integrated ship combat
system. AEGIS cruisers and destroyers constitute the majority of
the U.S. surface Navy and will continue to form the core of the
surface fleet for the next several decades. The AEGIS Combat
System is capable of simultaneous warfare on many fronts: anti-
air, anti-surface, anti-submarine, and strike warfare [9]. AEGIS is
deployed on some 100 naval vessels in the U.S. Navy, navies of

key U.S. allies across the globe, vessels of the U.S. Coast Guard1,
and even land-based ballistic missile defense installations (Figure
4). AEGIS is a system that protects assets from airborne attack
from aircraft or missiles. It detects airborne threats, plans how to
engage them, and launches missiles to intercept and neutralize
them [9].

Figure 4 AEGIS sea platforms include cruisers and destroyers
in the U.S. and allied navies, as well as U.S. Littoral Combat

Ships and U.S. Coast Guard National Security Cutters.
(Figure © BigLever Software, Inc.)

The mission of AEGIS, summarized in Figure 5, includes

• self-defense (protecting the host platform from attack),

• area air defense (for example, protecting a naval task
force that includes the host platform), and

• long-range air defense and ballistic missile defense (for
example, protecting a geographical area from long-
range ballistic missiles).

At the heart of the AEGIS Combat System is the AEGIS Weapon
System (AWS), which is a centralized, automated, command-and-
control and weapons control system that was designed as a total
weapon system, from target detection to kill.
The prime contractor for the AEGIS Weapon System is Lockheed
Martin’s Mission Systems and Training Division. There, some
1500 people work on the AEGIS program where, among other
things, they maintain the over one hundred thousand AWS
requirements and over ten million lines of source code used by
AEGIS (some 1.8 million SLOC in the last major upgrade alone).
Lockheed Martin employs 116,000 people worldwide and is one
of the world’s largest defense contractors.

1 Coast Guard vessels employ portions of AEGIS.

Figure 5 This viewgraph from the AEGIS program highlights
the missions of AEGIS. “ASCM” stands for anti-ship cruise
missile. “DDG” and “CVN” signify destroyer and aircraft

carrier, respectively.

5. The AEGIS Weapon System product line
The products in the AWS product line vary widely depending
(among other things) on the platform on which each is hosted. A
land-based installation will differ markedly from a naval platform,
which themselves differ based on sensors and weapon systems
and capabilities. For example, some but not all AEGIS platforms
are equipped to shoot down ballistic missiles, a major point of
variation indeed.

Like many product lines before and since, the AWS product line
evolved from an environment in which members were
commissioned, developed, and maintained independently.
Copying resulted in a plethora of almost-alike bodies of
requirements and code, and a defect shared across ship platforms
has to be fixed multiple times at great expense.

Figure 6 AEGIS implementation management, before and

after the product line approach

For example, before the product line transformation, each new
code baseline used a previous baseline as a point of departure and

then proceeded down its own development path, independently.
New capabilities were implemented separately in each baseline.
All changes from other baselines needed to be captured and
possibly re-implemented. Fixes were applied multiple times.
Figure 6 illustrates the before-and-after picture for code.

Figure 7 Transformation from independent programs to a

true product line approach

Figure 8 illustrates the basic factory approach behind the AWS
product line [8]. Shared assets on the left (only a few examples of
which are shown) are imbued with variation points. A variation
point is a place where a shared asset needs to differ based on
whether a feature has been selected or not for a configuration;
variation points are defined in terms of features. A variation point

might denote a requirement or design model element or code
segment or test case that applies, or not, based on feature choices
that define a product. A feature profile, describing a configuration
in terms of the features it exhibits, is fed to the configurator,
which configures the shared assets by exercising their variation
points to produce a suite of asset instances specific to the needs of
that configuration.

Each product line member has a profile that identifies which
capabilities (modeled as features) are included. This method
facilitates profiles being updated as capabilities are matured and
ready to be deployed in any given configuration.

Gears [1] is a product line engineering tool and framework that
powers the factory, enabling users to develop and evolve the
product line portfolio. Gears is a feature modeling tool; features
describe the capabilities of products; a feature profile is a feature-
based description of an individual product. Given a feature profile
for a product, Gears also configures shared assets into product-
specific instances for that product. Gears integrates with the tools
mentioned above, and so engineers can continue to work in tool
environments familiar to them. This approach allows users to
focus on developing and maintaining a single product line rather
than separate, multiple products.

Figure 9 and Figure 10 illustrate the factory for requirements and
source code, respectively. The shared assets are on the left of
each diagram; configuration based on feature choices results in
instances on the right.

Features and profiles are placed under configuration control and
managed via an Engineering Review Board (ERB). Changes to
existing features/profiles as well as the introduction of new

 Figure 8 Basic concepts of the feature-based product line factory approach: A configurator configures shared assets (such as
requirements, code, and tests, shown on the left) to configuration-specific instances according to the feature profile of the product line

member being built. “N” is the number of products in the product line. (Figure © BigLever Software, Inc.)

features and profiles are controlled by the Gears ERB where
cross-program considerations are given. A carefully crafted audit
process [10] that takes advantage of the Gears tool’s audit
capability is used to ensure an actuated specification (a) contains
the capability in the product configuration based on the feature
profile and (b) excludes the constraints or capability that is not
part of the product configuration. This same audit is used on the
actuated source code.

Figure 9 Requirements specs (from high-level to low) are

maintained in a single repository, then configured to produce
requirements for specific members of the product line.

A key facet of the approach is that a single feature model and a
single set of feature profiles apply across all of the shared assets:
models, requirements, code, and test cases (with more envisioned
for the future).

Figure 10 The software view of the factory, showing

inclusion/exclusion of various components for different
configurations. An included component can occur in different

forms depending on how its variation points are exercised.

This approach leaves the door open to add new shared assets to
the picture in a relatively straightforward manner. Since all
shared assets speak the same feature language, as it were, the
same set of feature profiles apply across the board. Generally no
(or little) additional feature modeling is necessary to configure the
new shared asset. As an example, intra-product Interface Design
Documents (IDS) are in the AWS DOORS database with Gears
variation in place. The IDS use the same features and profiles for
configuration as the specs and code, so product configuration

versions of the IDS can be produced. The IDS are also traced to
the low-level requirements concerning processing, and then in
turn to code. In addition to this, the DOORS database is currently
being actuated for specific product configurations to produce
product-specific training material.

Designing and implementing a product line for all product
configurations is a critical tenet. A product architecture must be
considered through all phases of a product design, development,
and test. In support of product line development, a product
architect role was established. This person must have a thorough
understanding of the product functional architecture as well as
cognizance of programs that will be coming into the AEGIS
product line. The architect will also define design considerations
to facilitate the entry of new capability into the product portfolio
while preserving product core.

In support of the AEGIS product line development, a
collaborative cross-program Multi-Baseline System Engineering
Integration Team (MB-SEIT) was established to ensure key
aspects of system and software architecture. This MB-SEIT has
responsibility to ensure proper product line behavior for each of
the products.

Many more careful policies and procedures have been put in place
in addition to the ones mentioned above, to ensure consistency
and traceability across shared assets, and to ensure orderly and
timely evolution of the product line in a way that is most
responsive to customer needs. Customer stakeholders for the
product line include different offices of the US Navy, as well as
the US Missile Defense Agency and the US Coast Guard.
Coordinating the sometimes-conflicting priorities of these
stakeholders requires a robust governance structure. Detailed
coverage of product line governance is outside the scope of this
paper, but described extensively in [7].

6. Economics of the factory
What does it cost to develop a product line under the factory
paradigm of Figure 8? Broadly speaking, costs include those
listed below. For each, we introduce SIMPLE-like cost function
names to refer to them later.

• CSAS: The cost of building and maintaining the shared
asset supersets that will be configured to produce
individual members of the product line

• CFM: The cost of building and maintaining the feature
models that capture the overall distinguishing
characteristics among the members of the product line

• CFP: The cost of building and maintaining feature
profiles that describe individual members of the product
line

• COrg: The cost of re-structuring the organization to take
best advantage of the factory approach.

When a new product is added to the family, if its characteristics
can be described simply as new combination of already-existing
features, then the only cost is adding its feature profile; no
changes are needed to the over-arching feature models. Nor are
any changes needed to the shared assets, because they were
already equipped with variation points to meet the needs of the
existing features. In other words, in this case CSAS and CFM (to
accommodate the new product) are both zero, while CFP is
minimal.

Generalizing this observation, we can see that the cost of adding a
new product to the product line is a function of how much new
feature content it contains. That unique content must be
accommodated in the shared assets (CSAS), and in the features
(CFM) and feature profile (CFP) that capture it.

The benefit accrued by adding a new product to the factory can be
calculated by comparing the cost of developing and maintaining
that product separately compared to the cost of including it in the
factory. Under a clone-and-own approach, Lockheed Martin has
determined that 35% of the requirements development effort was
simply to keep products in sync with each other when, for
example, a new requirement was promulgated across all products.
A similar amount can be posited for code and tests as well. This
cost avoidance is but one example of cost avoidance benefit.
Adding a new shared asset to the factory incurs the expense of
building its superset and building in variation points that make the
superset configurable to conform to products in the product line
(CSAS), and ensuring that the feature model includes the
distinguishing characteristics necessary to exercise those variation
points properly to produce product-specific instances (CFM). The
benefit comes from avoiding the development and maintenance of
the shared asset separately for each member of the product line,
and keeping those copies in sync as the product line evolves.

As we will see, we are measuring benefits that are growing non-
linearly as more products and more shared assets are added.

7. Measuring the superlinear cost avoidance
effect
Cost measures for AEGIS have been collected since the product
line organizations and all business areas reached steady state
product line behavior. Actual per build metrics were collected in
both the requirements and software areas to actually measure what
work and costs were being avoided.

Metrics are collected and evaluated throughout the product
lifecycle (Figure 11). This data is analyzed and opportunities for
product improvements are evaluated and implemented. The data is
reviewed at monthly product reviews that replace the old
program-specific reviews. At the product reviews the product
health and all product configuration metrics are discussed. Data
collected to data substantiates AEGIS product development as a
significant affordability initiative for the government. Real cost is
avoided throughout the product life cycle realized as a result of
the up-front system engineering effort starting with requirements
and following the legacy V-chart.

Figure 12 shows a slide from the AEGIS program contrasting the
pre-product-line requirements approach with the product line
approach. Notable is the line that says “Typically, 35% of
requirements development effort was keeping things in sync”
across projects, under the old clone-and-own approach.

That 35% of arguably wasted activity completely disappears
under the factory approach of Figure 8, and so is a reasonable
starting estimate for what the product line approach might be
expected to save. However, the actual system engineering
requirements cost avoidance realized to date has been about four

!

Figure 11 AWS metrics

times that amount. For software source code the initial estimate
of cost avoidance was, again, 35% but actual cost avoidance has
been more than double that.

In [7], it was revealed that the product line approach has resulted
in $119 million in cumulative cost avoidance over the three-year
period from 2011-2013 for the AWS product line, for a per-year
average of about $40 million.

Cost avoidance data is measured by capturing the actual
requirements and software work performed during each build of
the product line, which happens on a scheduled three-times-a-year
basis. The cost avoidance calculations use actual measured work
converted to dollars. Then the actual work items are re-calculated
based on what it would have cost per program using the old clone
and own approach.
The latest measures have shown that the cumulative cost
avoidance for years 2011-2014 have jumped to $166 million. This
means that, whereas we might have expected 2014 to contribute
the average $40 million to the cumulative total, in fact it
contributed $47 million, or 118% of the norm.

The cost avoidance is measured for each each build through 2014,
and is based on requirements and software activities. A build
happens at scheduled four-month intervals throughout the year,
and reflects the evolution of the product line through the
satisfaction of change requests. A build includes new
development as well as maintenance fixes, and so could be
considered a new member of the product line for purposes of
analysis that shows cost avoidance increasing over time. The
overall trend seems clear: 2013 showed modest but definite
growth in cost avoidance, but 2014 has shown pronounced
increases in cost avoidance.

What happened in 2014 to bring about these additional
economies? The primary answer is that the product line grew,
from four to five active major programs.

Figure 12 AEGIS requirements management, before and after

the product line approach. “CSL” stands for “Common
Source Library” which, despite its software connotation, is an

internal name for the overall product line effort.

The year 2014 thus also saw the cumulative effect of asset re-use
across all five programs instead of four. So our cost avoidance
formulation, it turns out, is a function of the number of active

programs. Exactly what that function is remains to be measured,
and discovering it is future work, but at this stage of the
exploration it clearly appears to be superlinear.

8. Explaining the superlinear cost avoidance
effect
Where do this extra cost avoidance come from that have greatly
exceeded even our own hopeful predictions?
We believe the following are the principal causes:

• Amortization of COrg: The cost of re-structuring the
organization to take best advantage of the factory
approach happened over time and was not without false
starts and missteps [7]. The AEGIS product line
presented the challenge of getting all the people trained
on a product line rather than a program specific view.
Traditional AEGIS processes were tailored to support
product line development. However, that re-structuring
has been accomplished, together with all of the
processes and procedures and governance activities put
in place to effectively run the factory. It is an
overstatement to say that COrg will be precisely zero
from this point forward, as optimizations will continue
to occur, but it is safe to say that it is the case to within a
first order approximation. Each new build, then, enjoys
the efficiencies purchased with COrg but does not have to
bear the cost. As more and more products are added,
the fraction of COrg allocated to it continues to decrease.
For example, the fourth product would bear one fourth
of the cost under a regime that averaged all costs across
all products, but the fifth would only bear one fifth.

• Amortization of CFM and CSAS : Similarly, the feature
models and shared assets are not undergoing wholesale
modification, but rather small and incremental
evolution. The initial costs are thus similarly amortized
over each new member of the portfolio, which bears
progressively smaller fraction of the initial cost.

• Features are the single language to express
differences: Under the factory approach, features are
the single authoritative lingua franca to express product
differentiation and shared asset configuration. This
makes adding new kinds of shared assets much easier.
Adding a new shared asset entails endowing it with
variation points expressed in terms of the existing
feature model. Just as CFM is amortized across new
products, it is equally amortized across shared asset
types.

• Continuing to improve: The product line team’s
organizations have been experiencing continued
refinements in behavior and process which is driving
higher efficiencies and productivities which will be
captured and trended. We find that teams become more
gelled and more cohesive over time. Their team
structure is common and uniform, and the team
continues to fine-tune itself. The overall effect is that of
a self-tuning engine with complete standardization and
consistency when dealing with each group’s scope of
work.

9. Summary and next steps
We have shown that in the AEGIS AWS product line, the cost
avoidance per product does not stay the same but grows over time
as more and more products are added to the family. Similarly, we
have argued that adding a new type of shared asset to the factory
is less expensive than adding its predecessors. Cost avoidance is,
in other words, a non-linear function of the size of the product
portfolio as well as the size of the shared asset portfolio.

This is in contrast to the linear cost models that have been
prevalent in PLE up to this point. If future data bears out this
trend, it should lend even more weight to the argument for
adopting PLE as the engineering paradigm for product portfolios.

The number of AEGIS AWS programs participating during this
metrics collection period was five. That is, each build served five
different programs. Over the next few years there are expected to
be six active programs participating in the AWS product line,
which should increase the current ROI percentages and the per
build ROI. Future additional ROI metrics collections will include
the organizational and test domains.

We are measuring, and will continue to measure team
performance in order to quantify our observation that teams are
becoming more efficient over time.

During the early stages of transformation to the product line, there
were many skeptics who wanted to see the business case for the
organizational re-structuring brought about by the adoption of
PLE. A return on investment study was performed that analyzed
and used the actual pre-product-line metrics and contrasted them
against what the predicted product line metrics were expected to
be. The system engineering requirements comparison phase
predicted at least a 35% return on the number of maintenance
requirements that needed to be captured every build. What we are
observing now is that this requirement ROI is a function of the
number of active programs during each build cycle and is far
exceeding our initial expectations.

We hope that other PLE programs will begin to look for this
superlinear cost avoidance effect as well, and report it in the
literature. We hope that this narrative will add still more weight to
the body of evidence showing the enormous cost avoidance
brought about by the product line approach, and will encourage
others to apply it. AEGIS is, like all aerospace and defense
systems, exceedingly challenging in terms of performance, cost
pressures, and satisfaction of strict requirements [6]. Yet, we are
showing that PLE is not only meeting but is exceeding our best
expectations. In this systems engineering PLE case, the more you
do the more you save.

10. References
[1] BigLever Software, “BigLever Software’s Product Line

Engineering Solution,”
http://www.biglever.com/solution/solution.html

[2] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J., Winkler, A. “Second Generation
Product Line Engineering Takes Hold in the DoD,”
Crosstalk – The Journal of Defense Software Engineering,
vol. 27, no. 1, January/February 2014.

[3] Boeckle, G., Clements, P., McGregor, J., Muthig, D., and
Schmid, K., “A Cost Model for Software Product Lines,”
Proceedings, Program Family Engineering (5) Conference,
Siena, 2003.

[4] Boeckle, G., Clements, P., McGregor, J., Muthig, D., and
Schmid, K. “Calculating Return on Investment for Software
Product Lines,” IEEE Software, special issue on ROI,
May/June 2004.

[5] Clements, P., Krueger, C., Shepherd, J., Winkler, A., “A
PLE-Based Auditing Method for Protecting Restricted
Content in Derived Products,” Proceedings SPLC 2013,
Tokyo, 2013.

[6] Clements, P., Gregg, S., Kreuger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J.,, and Winkler, A. “Second
Generation Product Line Engineering Takes Hold in the
DoD,” Crosstalk - The Journal of Defense Software
Engineering, Jan-Feb 2014.

[7] Gregg, S., Scharadin, R., LeGore, E., and Clements, P.
“Lessons from AEGIS: Organizational and Governance
Aspects of a Major Product Line in a Multi-Program
Environment,” Proc. SPLC 2014, Florence.

[8] Krueger, C., Clements, P. “Systems and Software Product
Line Engineering,” Encyclopedia of Software Engineering,
Philip A. LaPlante ed., Taylor and Francis, 2013.

[9] Naval Surface Warfare Center, “AEGIS Combat System,”
http://www.navsea.navy.mil/nswc/dahlgren/ET/AEGIS/defau
lt.aspx

[10] Shepherd, J., Winkler, A., Krueger, C., and Clements, P. “A
PLE-Based Auditing Method for Protecting Restricted
Content in Derived Products,” Proc. SPLC 2013, Tokyo.

[11] Weiss, D. M. & and Lai, C. T. R. Software Product-Line
Engineering: A Family-Based Software Development
Process. Reading, MA: Addison-Wesley, 1999.

