
12 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Paul Clements, BigLever Software,
Susan P. Gregg, Lockheed Martin,
Charles Krueger, BigLever Software,
Jeremy Lanman, U.S. Army PEO STRI,
Jorge Rivera, General Dynamics,
Rick Scharadin, Lockheed Martin,
James T. Shepherd, Lockheed Martin,
Andrew J. Winkler, Lockheed Martin

Abstract. Product Line Engineering (PLE) is a well-established engineering disci-
pline that provides an efficient way to build and maintain portfolios of systems that
share common features and capabilities. Systems—including DoD systems—built
with PLE have, for decades now, demonstrated improvements in development time,
cost, quality, and engineering productivity that consistently attain integer-multiple
improvements over comparable non-PLE engineering efforts. Until recently there
was no unified repeatable approach available; each PLE project went its own way.
But now, two high-visibility DoD examples (Navy’s AEGIS and Army’s Live Training
Transformation) are taking advantage of a strong and well-defined automation-
centered approach that some are calling Second Generation PLE, and reaping
substantial benefits as a result.

Second Generation
Product Line Engineering
Takes Hold in the DoD

each other that it is more beneficial to consider them as variants
in the same family. The Army’s Live Training Transformation
comprises a multitude of training systems covering a spectrum
from single-soldier weapons trainers to large-scale synthetic
force-on-force wargaming systems. Once again, there is benefit
being gained by viewing them as a family.

PLE: Feeling Its Way in the First Generation
Systems built under the discipline of PLE have, for decades

now, experienced improvements in development time, cost, qual-
ity, and engineering productivity that consistently attain integer-
multiple improvements over previous engineering efforts. The
PLE community, eager to spread the word, has over the years
published a swarm of readily available case studies and catalogs
of successful PLE-engineered families of systems in industry
[14][3][9][12][15]. Many of the improvements reported are jaw-
dropping, such as a family of embedded engine controllers that
used to take a year to develop and under PLE take less than a
week [3], or a family of computer peripherals can be built with
1/4 of the staff, in 1/3 of the time, and with 1/25 the number
of bugs as the organization’s pre-PLE products [14].

However, each of these successes employed its own unique
approach and techniques applied atop the basic concepts in
varying degrees and in varying ways. These approaches, which
can be characterized as first-generation, were point-case ef-
fective but lacked a systematic, repeatable, codified methodol-
ogy. All made a strong distinction between domain engineering
(creation of reusable parts) and its equal counterpart application
engineering (creation of specific products from those parts),
focused on software code as the most important reusable re-
source, and used the concept of a feature to compare systems
in a domain.

Nevertheless, the benefits were real and attention-grabbing.
In addition to the hard numbers, PLE practitioners have con-
sistently reported a wide array of less tangible (but arguably no
less important) benefits, including:

• Ability to perform continuous portfolio-wide insertion
 of new technology and new functionality at low cost

• Uniform look and feel to products and greater
 interoperability

• Higher engineer satisfaction with resulting lower
 workforce turnover

This message was not lost on the Pentagon or its contractors,
both eager to lower cost and to translate (for example) reduced
time to market into reduced time to deployment to support the
Warfighter. Some early but notable examples of DoD-oriented
product line efforts include:

• A product line of satellite ground control systems
 for the National Reconnaissance Office [3]

• A product line of weapons test ranges at the
 Naval Undersea Warfare Center [4]

• A product line of helicopter avionics systems for the
 Army’s Technical Applications Program Office [2]

• A product line of submarine combat systems for
 the Navy’s Submarine Warfare Federated
 Tactical System [8]

These efforts, too, enjoyed the same kind of eye-catching
benefits: Millions of dollars saved, delivery times slashed, and
increased capability for lower cost.

Introduction
The DoD is rife with systems that share much in common.

For example, over 80 companies, universities, and government
organizations are actively developing one or more of some 200
unmanned aerial vehicle designs. They differ from each other in
important ways, but they resemble each other in ways that are
at least as important. In 2004, the General Accounting Office
was able to identify 2,274 separate DoD business systems (but
nobody knows the true number) that are different, but also alike.
The Joint Strike Fighter is being delivered in three main variants
with very different capabilities, but they are all still the F-35.
Communication systems, armored vehicles, tactical fixed-wing
aircraft, helicopters—the list of large-scale examples of systems
that are different yet the same goes on and on.

These examples are—or in many cases should be—product
lines. A product line is a set of systems that share common
features, and are engineered, developed, and sustained using
a common set of shared assets1. The systems are built and
maintained in a way that respects the variations in capability and
function that they each need to provide to their respective users,
but also takes maximum advantage of the commonality they
share. PLE is the name of the established engineering discipline
that far-sighted organizations use to accomplish this. It is an ef-
ficient way of building and maintaining portfolios of systems.

This article is about two high-visibility examples in the DoD
where far-sighted organizations are achieving that efficiency.
The AEGIS command and control systems of Naval surface
combatants differ widely, but have so much in common with

CrossTalk—January/February 2014 13

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Meanwhile, PLE as a discipline was evolving. Languages for
expressing variation became more uniform and simpler, reflect-
ing only what was needed in practice. Automation to support
product derivation from shared assets moved out of the re-
search labs and into real-world application, gaining robustness,
simplicity, and usability. PLE adopted a whole-system perspec-
tive, a powerful generalization reflecting a move away from the
field’s software-only roots. The trends have crystallized into an
approach some are calling “Second Generation Product Line
Engineering” (2GPLE) [7].

PLE: Second Generation Maturation
Building on first-generation efforts, 2GPLE embodies a more

well-defined and repeatable process, centered on a strong fac-
tory paradigm. Distinguishing characteristics of 2GPLE include:

1. Features express product variation: In the factory para-
digm, we need a way to describe what product we are building,
so the shared assets (requirements, designs, code, test cases,
user manuals, etc.) can be configured appropriately. Rather than
adopt a different “language” and mechanism for each type of
artifact (for example, compiler directives for code, attributes
for requirements, text variables for documents, and so forth),
2GPLE uses a small and consistent set of variation mechanisms
[1] for all of the artifacts. Each product is described by giving a
list of its features: “A prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems” [10].
Features are used to express product differences in all lifecycle
phase artifacts. This streamlines the development process and
lets all stakeholders speak the same language.

2. Shared assets come from all lifecycle phases, not just
the software: Early approaches to PLE certainly encouraged
practitioners to include all kinds of artifacts in their collection of
shared assets, but the unmistakable emphasis was on software.
But in large-scale product lines, automated production of whole
and consistent sets of lifecycle artifacts is essential. Managing
these artifacts means imbuing them with variation points [1],
which are places where an artifact can change to support differ-
ent products. Variation points reflect the different feature-based
product contexts in which the artifacts will be used. In 2GPLE,
all supporting assets are considered equally important; software
plays the same role as any other, or even (in cases where the
products contain no software) no role at all.

3. Industrial-strength automation is employed in the form
of a configurator, which is a tool that takes a feature-based
description of a product and exercises the variation points in
the shared assets to produce an artifact set that supports the
named features. Product development thus becomes automated,
so that application engineering (so important in first-generation
approaches) becomes vanishingly small. (Both product line
organizations in this article chose the BigLever Software Gears
PLE configurator [11] as the automation engine to power their
product line.)

Figure 1 illustrates these three distinguishing aspects of
2GPLE. A feature profile is a description of a product in terms
of the feature choices. The configurator (here, Gears) uses the
feature profile to configure each shared asset (by exercising
its variation points) to produce the set of engineering artifacts
specific to that product.

Figure 1. The 2GPLE factory paradigm. The configurator uses a feature profile
for a product to exercise variation points (denoted by the gear symbols) in the
shared assets, configuring them to support a product with those features.

	

To understand what PLE is, it is important to understand what it is not. A superficial ex-
planation of PLE describes reuse through shared artifact repositories. Yes, there is reuse,
and yes, there are repositories, but that is like explaining Project Apollo by starting with
powdered orange breakfast beverage. It was there, but was hardly the point.

Many organizations claim, incorrectly, that they are employing PLE when in fact are only
practicing reuse and nothing more. And they are practicing a particularly problematic form
of reuse called “clone and own.”

Figure 4 shows a stylized view of a production shop in which N products are developed
and maintained—or, for that matter, acquired. This “shop” could turn out the systems under
a PEO’s purview, and be run by a single contractor, or a prime with subs, or separately
administered programs. In this simplified view, each product comprises a set of artifacts;
for example, requirements, design models, source code, and test cases. Each engineer in
this shop works primarily on a single product. When a new product is launched, its project
copies—clones—the most similar assets it can find, and starts adapting them to meet the
new product’s needs. Development and acquisition efforts that think reuse is the goal can
chalk up impressive metrics to claim success.

But under this kind of reuse, making portfolio-wide changes becomes prohibitively
expensive. And portfolio-wide changes are the norm in DoD systems: New hardware,
new architectures, new standards, new mission doctrines, new rules of engagement, new
systems to interoperate with, new adversaries, and new threats can easily lead to the need
to change every system in a family.

To see how clone-and-own reuse can lead to intractable complexity, consider one kind
of portfolio-wide change: Defect elimination. Assume that a defect is found in Product
B and that the defect is traced to an ambiguous or incorrect requirement in Product B’s
requirements. The Product B team fixes the error, re-designs as necessary, then fixes the
code and test cases before re-deploying Product B. Product B is now healthy again.

But suppose that the defect in Product B’s requirements was “inherited” when the Prod-
uct B team copied the requirements from Product A. Suppose further that the source code
for Product N was copied from Product B’s (defective) source code, and the test cases for
Product N were similarly “borrowed” from Product N’s (inadequate) test cases.

To really root out the defect from the entire portfolio, each of the N product teams
should really confer with each of the other N-1 product teams. These communication
paths are shown in red in Figure 4. This communication obligation imposes an overhead
that grows as the square of the number of products. So, in a relatively modest product line
of 30 products, almost 900 inter-project communication paths should be activated. This
complexity will quickly overwhelm any program office, let alone any engineering staff, and
the result is usually exhaustion, a climbing defect rate, out-of-control sustainment cost, and
a reluctance or inability to make changes.

This complexity occurs even if reuse levels are as high as possible among the programs;
the product line will still collapse under the weight of its “clone and own” reuse strategy.
Copy-based reuse gives the copying program a head start, but then loses all of its value
as the new program spirals off on its own evolution and sustainment trajectory. Acquisition
programs that encourage reuse but not true product line engineering are setting themselves
up for sustainment failure.

PLE IS MUCH MORE THAN REUSE

14 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The automation-centered approach also enables a fourth salient
characteristic of 2GPLE: A simplified model for configuration man-
agement. The shared assets are configuration-controlled, but the
products need not be, since they can be quickly re-generated [11].

A fifth characteristic involves feature languages that facilitate
modular and hierarchical product lines developed across organi-
zational boundaries [7]. This allows a system-of-systems family
to become a product-line-of-product-lines.

Overall, 2GPLE represents a more clearly formulated meth-
odology that organizations can use directly. It simultaneously
generalizes and simplifies concepts from its first-generation
roots. Once again, industry and the DoD are paying attention. In
addition to 2GPLE projects in industry at large—General Motors,
for instance [7]—two multi-billion-dollar high-visibility programs
in the Army and the Navy (respectively) are employing 2GPLE
to help their Warfighters train and fight, and are seeing substan-
tial benefits in reliability, sustainability, and responsiveness. The
two programs are Live Training Transformation and AEGIS.

2GPLE in the Army: Live Training Transformation
In 2010 General Dynamics teamed with BigLever Software

(the PLE technology provider) to create the winning proposal
for the US Army’s Live Training Transformation (LT2) family of
training systems. (This contract was the first U.S. Army contract
focused specifically on product line engineering as a required
part of the solution.)

The United States Army Program Executive Office for Simula-
tion, Training and Instrumentation (PEO STRI) is in the business
of training soldiers and growing leaders by providing responsive,
interoperable simulation, training, and testing solutions and acquisi-
tion. Its training and testing systems portfolio includes live, virtual,
and constructive training packaged in embedded and interoperable
products that are fielded and used throughout the world.

LT2 has long been a true software product line, in the sense
defined in [3], using first-generation approaches. In 2010 the
program made the transition to 2GPLE. LT2 shared assets
include the open architectures, common software components,
standards, processes, policies, governance, documentation, and
more, all leading to a common approach and frameworks for
developing live training systems. Examples of the many types
of training systems in the LT2 family include Military Operations

Figure 2. Cost avoidance benefits of product line engineering for LT2

	

0

20

40

60

80

100

120

140

160

05 06 07 08 09 10 11 12 13

$
in

 M
ill

io
ns

Stovepipe w/o Consolidation Product Line - Industry Standard CPM Impact

1G PLM Cost Avoidance

1G PLM (Pre-
Consolidation)

2G PLM Cost Avoidance

2G PLM (CPM
Impact)

FY

480

420

360

300

240

180

120

60

0

on Urban Terrain (MOUT), Maneuver Combat Training Center
(MCTC), instrumented live-fire range training, and various Joint
(that is, inter-Service) training systems.

The commonality behind LT2 facilitates the rapid development
of new products but also ensures that products across the LT2
product line can communicate and interoperate with each other.
This is important because large training exercises need to employ
different kinds of training systems working together. The LT2
product line makes use of plug and play components and applica-
tions that are common between products, and permits changes,
upgrades and fixes developed for one product to be applied to
others. This concept provides the inherent logistics support ben-
efits that derive from commonality, standardization, and interoper-
ability including the reduction of total lifecycle costs [13].

The LT2 migration to 2GPLE is proving easier than expected.
First, a product line culture and high reuse were already in place
with the first generation product line. Second, 2GPLE approach-
es are easier to adopt because they enable non-disruptive and
incremental steps to be taken rather than a large “big bang”
start-over event. LT2 stakeholders have already enjoyed sub-
stantial benefits from LT2’s first-generation approach and are
therefore more willing to move to 2GPLE.

Maximizing asset sharing has proven to reduce fielding time
and minimize programmatic costs, while enhancing training
benefits afforded to the soldier. Recognized as the Army’s live
training standard, the LT2 product line architecture, standards,
assets, and common operating environment have been used by
more than 16 major Army and Department of Defense live train-
ing programs with more than 130 systems fielded.

In addition, LT2’s 2GPLE approach is exhibiting the
following benefits:

• More efficient integration of the Army products by the
 use of common standards and products to meet
 training and test requirements

• Compatibility of objective system and products with
 evolving capabilities

• Wider interoperability before executing subsystem
 and device production

• Reduced total lifecycle costs to include acquisition,
 development, testing, fielding, sustainment,
 and maintenance.

This continuing transformation has generated a significant
return on investment to date within PM TRADE’s live training
system acquisition portfolio. The first generation approaches
generated more than $300 million in cost avoidance across the
development of live training systems to include Combat Training
Centers Instrumentation Systems, Home Station Instrumenta-
tion Systems, Instrumented Ranges, and Targetry. The second
generation approach, known as Consolidated Product Line
Management or CPM in the Army, is projected to save another
$200 million over the next two to five years2.

2GPLE in the Navy: AEGIS Combat System
The AEGIS Combat System is an integrated warfare system

deployed on some 100 naval vessels in the U.S. Navy and the
navies of key allies across the globe. AEGIS is deployed on
deep-water fleet ships, Littoral Combat Ships, and (more recent-
ly) U.S. Coast Guard National Security Cutters (NSCs). As the

CrossTalk—January/February 2014 15

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Aegis Combat System Engineering Agent, Lockheed Martin’s
Maritime Systems and Sensors Division maintains the Common
Product Line (CPL) requirements in a common DOORS data-
base and source code in a Common Source Library (CSL) that
is maintained for all product configurations, and they do it using
the 2GPLE paradigm.

The primary objective of CPL is to develop once, and build
and deploy many times from one set of common assets—princi-
pally requirements, source code, and tests. The AEGIS Base-
line 9 Common Product Line comprises the requirements and
source code that is maintained for all product configurations.
CPL supports the US Navy’s objective to more quickly field
capability as well as the goal of minimizing cost and schedule
for delivering computer program capability updates.

The CPL methodology is in high gear for the current AEGIS
Baseline 9, which is the foundation for cruiser and destroyer

CIEDAS—Counter Improvised Explosive Device (IED)
After Action Review System (USAF)
The LT2 Homestation Instrumented Training System (HITS) product was heav-
ily leveraged in creating the Air Force’s CIEDAS product for convoy counter
IED training. An early version of what became the Digital Range Training
System (DRTS) Integrated Player Unit (IPU) was used to instrument Air Force
convoy vehicles providing multiple in-vehicle video feeds and position/loca-
tion information to the mobile Exercise Controller (EXCON). Temporary mobile
field cameras provided additional video coverage. The LT2 product line HITS
software components and Common Training Instrumentation Architecture
(CTIA) provided the basis for exercise control, player unit monitoring and con-
trol, and After Action Review (AAR) reporting. Common software components
provided the video monitoring and editing, and a new rapid AAR capability was
developed that allowed an on-going exercise run and an after action review
presentation simultaneously with a single operator.

SMS—Soldier Monitoring System (Army—SOCOM)
The Soldier Monitoring System provides safety monitoring of special forces
students conducting a land navigation exercise. CTIA and HITS provide the
foundation of the exercise control and AAR capabilities of SMS. The player
unit radio instrumentation takes advantage of the standard LT2 Player Unit
gateway, CTIA provides the architecture and event distribution mechanism, and
HITS components provide situational awareness capabilities.

I-TESS II—Instrumented -
Tactical Engagement Simulation System II (USMC)
I-TESS II provides the USMC with dismounted instrumentation in support of
direct force-on-force tactical training. The LT2 HITS product was used in its
entirety as the exercise command and control and after action review capabil-
ity. Modifications to HITS were created to provide USMC customizations to
support their unique style of training. These changes were approved by the
LT2 Core Asset Working Group (CAWG) Integrated Product Team (IPT) and
absorbed by the LT2 product line.

MC-ITS—Marine Corps Instrumentation Training System (USMC)
MC-ITS was a predecessor to RISCon that provided force-on-force tactical
training for the USMC. HITS was used in its entirety as the foundation for this
program. Specific new functionality was added to HITS to mainly support USMC
IED training and specialized IEDs and IED jammers. The modifications produced
by this program have just recently been rolled into the LT2 product line.

RISCon—Range Instrumentation System Control (USMC)
The RISCon program’s objective is to reduce sustainment, operational, and
enhancement costs of the existing and future Marine Corps Range Instrumen-
tation System Product Line. RISCon leverages the CPM construct of tools (i.e.
Gears) and processes to establish and manage a framework for affordable
USMC Product Line operation, improvements and deployments. The project
leverages the US Army’s LT2 Product Line using CTIA. CTIA establishes the
framework (protocols, standards, interfaces, etc.) for developing a repository of
LT2 core components.

platforms as well as Land Based Ballistic Missile Defense
(BMD). The CPL approach enables the deployment of products
from the combat system on the Littoral Combat Ships (LCS)
and the US Coast Guard NSCs. It is also the basis for all future
domestic and international AEGIS and LCS development efforts.

CPL enables the critical convergence of AEGIS antiaircraft
warfare and BMD functionality while providing the fleet with
affordable capability and timely upgrades that keep pace with
evolving threats. The CPL approach encompasses all phases of
the classical V-chart. In the requirements development phase,
requirements are consolidated into a single database (using
IBM Rational’s DOORS tool) for all stakeholder programs using
Gears as the variation engine. This approach avoids redundant
efforts and requirements capture when managing program-
unique databases. Verification of the requirements is also main-
tained in the DOORS database.

In the software implementation phase, a master software
development repository (CSL) is utilized that contains source
files, libraries and configuration files that support multiple
product configurations. Products comprise common and unique
capabilities such that modifications to common configurations
are implemented once and feature-based variation is used to
automatically include or exclude each capability from a product.

Figure 3. The Aegis destroyer USS Hopper (DDG 70)
launches a missile to intercept a short-range ballistic missile.
(U.S. Navy photo/Released)

LT2 SPREADS ACROSS THE SERVICES
The hundred-plus systems deployed as members of the LT2 family
include these in the Air Force and Marines, as well as other
commands within the Army:

16 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

	

During the test and verification phase, CPL
utilizes a consolidated testing approach to maximize
efficiency of common requirements and capabili-
ties. This results in tailored regression testing based
on changed functional areas. This also utilizes an
integrated test team using common test plans and
procedures. Common test efforts are leveraged and
consolidated problem reporting avoids duplicate
reporting caused by redundant testing. These test
benefits are currently being realized as AEGIS
baseline 9 prepares for certification.

Organizational consolidation became possible
under product line development. Overall program
management was consolidated to minimize redun-
dancy and achieve a common program structure
and consolidated business rhythm, metrics, and
reviews. An engineering product team was estab-
lished that spans programs to maximize common-
ality and to drive consistency and design practices.
An Engineering Review Board was established as
a decision authority to ensure proper CPL behav-
ior at the product level for each of the elements.

The benefits were highlighted when the US
Coast Guard made the decision to enter the family
with their new National Security Cutter. Once in
the product line, they avoided the months it would
have taken to implement and verify the hundreds
of fixes and upgrades that set their application
apart. Instead, the Coast Guard applied their
unique feature-based requirements to the CPL
DOORS database using Gears, and thus avoided
having to apply the specification changes one by
one. This resulted in a much quicker deployment
of code and requirements for the Coast Guard.

Conclusion
Although this is primarily the story of an Army

and a Navy program, LT2 and AEGIS have put
down 2GPLE roots in every Service. Aegis has
brought the Coast Guard into its product line
family. And the hundred-plus LT2 family members
include several developed for and in use by the Air
Force and Marines.

There are organizational, management, and
contracting issues that these programs have had
to surmount, but their success shows that those
issues are tractable. As a result, they would seem
to provide strong evidence that Second Genera-
tion Product Line Engineering is an engineering
discipline suitable for DoD acquisition programs,
across Services and domains. Like its first-gener-
ation predecessor methods, it is showing multiple-
integer improvements in quality, time to deploy-
ment, cost, and engineering productivity.

Figure 4. Product-centric development and O(N2) complexity

http://www.navair.navy.mil

CrossTalk—January/February 2014 17

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Dr. Paul Clements is the Vice President of Cus-
tomer Success at BigLever Software, Inc., where
he works to spread the adoption of systems and
software product line engineering. He was previ-
ously at Carnegie Mellon’s Software Engineering
Institute, where for 17 years he worked in software
product line engineering and software architecture
documentation and analysis. Clements is co-author
of three practitioner-oriented books about software
architecture as well as the field’s leading text on
software product line engineering.

E-mail: pclements@biglever.com
Phone: 512-567-1681

Susan P. Gregg is a Principal Project Engineer
for the Lockheed Martin Corporation. She holds a
B.A. in Physics from Rutgers University. She has
over 30 years experience is systems and software
engineering. She is currently the Technical Director
for the US Navy’s Common Product Line.

E-mail: susan.p.gregg@lmco.com
Phone: 856-359-1636

Dr. Charles Krueger, BigLever founder and CEO,
is a thought leader in the product line engineer-
ing field with 25 years of experience in software
engineering practice and more than 60 articles,
columns, book chapters, conference keynotes, and
session presentations. Krueger has proven exper-
tise leading product line development teams, and
helping establish notable PLE practices in com-
panies such as General Motors, Lockheed Martin,
General Dynamics, Ikerlan/Alstom, and three
Software Product Line Hall of Fame inductees.

E-mail: ckrueger@biglever.com
Phone: 512-426-2227

Jeremy T. Lanman, Ph.D. is the lead architect for
the Common Training Instrumentation Architec-
ture and Live Training Transformation Product
Line at the U.S. Army PEO STRI. His professional
experience includes 10 years of DOD acquisition
and systems engineering of military simulation
and training systems. Dr. Lanman received his
B.S in Computer Science from Butler University,
M.S. in Software Engineering from Embry-Riddle
Aeronautical University, and Ph.D. in Modeling and
Simulation from the University of Central Florida.

E-mail: jeremy.lanman@us.army.mil
Phone: 407-384-5307

Jorge Rivera is currently working for General
Dynamics C4 Systems out of the Orlando facility
leading live training efforts and supporting the
2nd Generation Product line instantiation under
the CPM contract. His prior experience includes
25 years of DoD Acquisition service with over 15
years of those in the live training domain. As the
Assistant Project Manager (APM) LT2, Mr. Rivera
championed the LT2 product line and managed the
CTIA & FASIT efforts. He earned his B.S. in Electri-
cal Engineering (EE) from the University of Puerto
Rico in 1983 and his M.S. in EE from Fairleigh
Dickinson University, NJ in 1987

E-mail: jorge.rivera@gdc4s.com
Phone: 407-275-4820

Rick Scharadin has over eighteen years of Senior
Program Management experience related to com-
plex large scale system development, open archi-
tecture designs, software product line development,
product integration, test and delivery for various
Navy Aegis Baselines. He has accumulated over
his career with Lockheed Martin 12 service awards,
including manager of the year in 2001. Rick has a
BS in Electrical Engineering from Penn State and a
MS in System Engineering from Stevens Institute.

E-mail: richard.w.scharadin@lmco.com
Phone: 609-326-4685

James T. Shepherd works as a Lead Architect on
the Aegis software common product line for Lock-
heed Martin MS2. He holds a B.S. in Computer Sci-
ence from Montclair State University and an M.S.
in Computer Science from Drexel University. He
has more than 25 years experience in systems and
software engineering of mission critical applications
for the US Navy.

E-mail: james.t.shephard@lmco.com
Phone: 609-326-4685

Andrew J. Winkler is a Principal Engineer at
Lockheed Martin and has over 15 years experi-
ence working on large scale systems, including the
AEGIS Combat System and the DDG1000 C3I
system. Most recently Andrew has held the role of
System Architect for the US Navy’s AEGIS Com-
mon Product Line. Andrew has a BS and MS in
physics from the University of Vermont.

E-mail: andrew.j.winkler@lmco.com
Phone: 856-914-6318

ABOUT THE AUTHORS

mailto:pclements@biglever.com
mailto:susan.p.gregg@lmco.com
mailto:ckrueger@biglever.com
mailto:jeremy.lanman@us.army.mil
mailto:jorge.rivera@gdc4s.com
mailto:richard.w.scharadin@lmco.com
mailto:james.t.shephard@lmco.com
mailto:andrew.j.winkler@lmco.com

18 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

REFERENCES NOTES
1. Bachmann, F., Clements, P. “Variability in Software Product Lines,”
 Technical report CMU/SEI-2005-TR-01, Software Engineering
 Institute, 2005.
2. Clements, P. and Bergey, J. The U.S. Army’s Common Avionics
 Architecture System (CAAS) Product Line: A Case Study, Technical
 Report CMU/SEI-2005-TR-019, September 2005.
3. Clements, P.; Northrop, L. Software Product Lines: Practices and
 Patterns, Addison-Wesley, 2002.
4. Cohen, S., Dunn, E., Soule, A. , Successful Product Line
 Development and Sustainment: A DoD Case Study,
 CMU/SEI-2002-TN-018, September 2002.
5. Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing U.S. Army
 Return on Investment Utilizing Software Product-Line Approach,”
 Interservice/ Industry Training, Simulation, and Education
 Conference (I/ ITSEC), 2012.
6. FedSmith.com, “Billions Wasted…,” <http://www.fedsmith.com/
 article/313/billions-wasted-dod-because-duplicate-business-
 systems.html>
7. Flores, R., Krueger, C., Clements, P. “Mega-Scale Product Line
 Engineering at General Motors,” Proceedings of the 2012 Software
 Product Line Conference (SPLC), Salvador Brazil, August 2012.
8. Guertin, N., and Clements, P., “Comparing Acquisition Strategies:
 Open Architecture vs. Product Lines,” Proceedings of the 2010
 Acquisition Research Symposium, Monterey, May 2010.

9. Jensen, Paul. (2009). “Experiences with Software Product Line
 Development.” CrossTalk 22, 1 (January 2009): 11–14.
10. Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. “Feature-
 Oriented Domain Analysis (FODA) Feasibility Study” (CMU/SEI-90-
 TR-021, ADA235785). Pittsburgh, PA: Software Engineering
 Institute, Carnegie Mellon University, 1990.
11. Krueger, C. “The Systems and Software Product Line Lifecycle
 Framework,” BigLever Software Technical Report #200805071r3,
 2010. http://www.biglever.com/extras/SplLifecycleFramework.pdf.
12. Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco. Software
 Product Lines in Action, Springer, 2007.
13. Rivera, J., Samper, W., Clinger, B. (2008). Live Training
 Transformation Product Line Applied Standards For Reusable
 Integrated And Interoperable Solutions. Paper No. 483;
 MILCOM 2008.
14. Software Engineering Institute, “Catalog of Software Product Lines,”
 <http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm>
15. SPLC Product Line Hall of Fame, <http://splc.net/fame.html>
16. UAV Forum, Librarian’s Desk,
 <http://www.uavforum.com/library/librarian.htm>

1. This is an adaptation of the Software
 Engineering Institute’s definition of a
 software product line, which is a product
 line in which software plays a central role
 in the systems :3]
2. These figures are based on industry
 standard estimates of code cost, and are
 calculated assuming that post-deployment
 software support constitutes 70% of
 development cost and a life expectancy of
 10 years. See [5] for a more detailed
 explanation.

http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html
http://www.sei.cmu.edu/publications/documents/90.reports/90.tr.021.html
http://www.fedsmith.com/article/313/billions-wasted-dod-because-duplicate-business-systems.ElectricalEngineersandComputerScientistsBeontheCuttingEdgeofSoftwareDevelopmentTheSoftwareMaintenanceGroupatHillAirForceBaseisrecruitingcivilians
http://www.fedsmith.com/article/313/billions-wasted-dod-because-duplicate-business-systems.ElectricalEngineersandComputerScientistsBeontheCuttingEdgeofSoftwareDevelopmentTheSoftwareMaintenanceGroupatHillAirForceBaseisrecruitingcivilians
http://www.fedsmith.com/article/313/billions-wasted-dod-because-duplicate-business-systems.ElectricalEngineersandComputerScientistsBeontheCuttingEdgeofSoftwareDevelopmentTheSoftwareMaintenanceGroupatHillAirForceBaseisrecruitingcivilians
mailto:309SMXG.SODO@hill.af.mil
http://www.facebook.com/309SoftwareMaintenanceGroup
http://www.biglever.com/extras/SplLifecycleFramework.pdf
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
http://splc.net/fame.html
http://www.uavforum.com/library/librarian.htm

