
A Methodical Approach to Product Line Adoption

Michael Dillon
US Army PEO STRI

12350 Research Parkway
Orlando, Florida USA

+1 407 384 5307

Mike.Dillon@us.army.mil

Jorge Rivera
Rowland Darbin

General Dynamics C4 Systems
12001 Research Parkway, Suite 500

Orlando, FL 32826
+1 407 275 4820

Jorge.Rivera@gdc4s.com
Rowland.Darbin@gdc4s.com

ABSTRACT
 The evolution of the U.S. Army’s Live Training Transformation
(LT2) product line of combat training systems, including the
move by the Army to consolidate management of the product line
under a single contracting team, has provided a natural experiment
that validates the hypothesis that product line engineering
practices are more effective than traditional software engineering
practices, and has demonstrated which product line adoption
approaches are more successful than others. By analyzing this
natural experiment, the product line team has been able to apply a
methodical approach to product line adoption across the
development organization and successfully adopt second
generation product line processes. This paper explores that
methodical approach. It will enumerate the steps that led to
successes and explore the contributing factors and unintended
consequences of failures along the way. Additionally this paper
will explore how this approach is being employed to extend the
LT2 product line beyond software.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line engineering,
software product lines, feature modeling

General Terms
Management, Design, Economics.

Keywords
Product line engineering, software product lines, feature
modeling, feature profiles, bill-of-features, feature constraints
hierarchical product lines, variation points, product baselines,
product portfolio, product configurator, second generation product
line engineering, product line governance, product line adoption

1. Introduction
Live Training Transformation (LT2) [12] is the product line
strategy put in place by the United States Army Program
Executive Office for Simulation, Training and Instrumentation

(PEO STRI). Through the use of LT2, the Army’s office of the
Project Manager (for) Training Devices (PM TRADE) builds and
maintains live training systems in support of homestation training,
deployed training, urban operations training, Maneuver Combat
Training Center training and instrumented live-fire range training.
PM TRADE is the Army’s acquisition agency for live training
systems.

LT2 has realized significant improvements in cost savings and
cost avoidance totaling hundreds of millions of dollars [3] in
development and sustainment of live training systems. Live
training systems in the product line support year-round training
exercises at over 150 ranges across the globe, training individual
soldiers as well as full brigades in live force-on-force and force-
on-target engagements (Figure 1, Figure 2).

Figure 1 Soldiers experience a simulated improvised explosive

device (IED) attack and perform live-fire qualifications,
respectively, using training systems in the LT2 product line.

(US Army photos)

© 2014 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SPLC 2014, September, 2014, Florence, Italy.
Copyright 2014 ACM 978-1-4503-2740-4/14/09…$15.00.
http://dx.doi.org/10.1145/2648511.2648550

Figure 2 Live Training Domain. “ExCon” refers to exercise
control (the part of the system that oversees and controls the
training scenario) and “Comms” stands for communications.

Prior to the implementation of the LT2 product line, live training
systems and devices consisted largely of products developed
separately by a variety of different manufacturers to comply with
disparate requirement sets and were designed and implemented
without a common framework. Commonality was not attempted
and interoperability among systems was rare, difficult, and costly
to achieve. Configuration changes to both hardware and software
were often performed on-site as part of the sustainment effort,
making configuration control virtually impossible.

Over the past 14 years, the LT2 product line has evolved from a
loosely associated group of contracts fielding U.S. Army live
training systems, to a fully functioning and award winning1
software product line.

In 2009 the Army issued a contract to consolidate the
management of the LT2 Product Line, to gain further optimization
in deploying live training systems. General Dynamics is the
prime contractor, in partnership with experts in the fields of
product line engineering and live training, to develop a methodical
approach to second generation product line engineering [3]
adoption. The contract is called Consolidated Product-Line
Management (CPM). The successful adoption of second
generation product line management is currently yielding $18M
per year in cost avoidance for products generated from the shared
baseline.

The evolution of LT2 as a product line is documented in
numerous papers (for example, [1][3][5][6][7][8][9]) and is
measured continuously though yearly contractor performance
reviews. This unique situation of continuous critique and re-
evaluation has provided the CPM team with a rich data set
revealing a natural experiment in product line adoption. The path
taken by LT2 has sometimes been fortuitous, sometimes planned,
and sometimes less than ideal. As is the nature with all
engineering efforts, there is little appetite for failure and the
community of contractors supporting LT2 has amassed a great
deal of domain expertise that makes genuine failure extremely
rare.

To formalize the adoption of product line methodologies we have
analyzed the past contracts and cast the LT2 evolution as a set of

1 Recent awards include: 2012 U.S. Army Acquisition Excellence

Award for Information Enabled Army, 2012 U.S. Army
Modeling and Simulation Office (AMSO) Award, and 2011
National Training and Simulation Association (NTSA) Award.

execution methodologies. Each of these methodologies is an
approach to dealing with the disciplined management of
commonality and variation, which is the essence of product line
engineering.

The methodologies together paint a picture of stepwise PLE
evolution from loosely coupled product development efforts to a
streamlined, shared-asset-centric, automation-powered product
line factory. Each methodology has its advantages and
disadvantages, which will be identified and discussed.
These methodologies are not mutually exclusive; it is not the case
that one fully ends before the next begins. Because Live Training
efforts and the LT2 product line are continually expanding, each
methodology may well continue to play a role even after the
primary focus has shifted to another. By characterizing these
methodologies using concrete examples that are clearly articulated
and familiar to the product teams, we are able to build awareness
and formalize the process of improvement, subsequently evolving
to a greater level of efficiency in product line engineering.

In the course of this paper, we will evaluate several product line
failures. These did not result in failures in product delivery but
have revealed opportunities for improvements in product line
engineering.
For each methodology we will identify attributes that enable the
methodology, define the goodness that execution within this
methodology provides as well as the negative side effects. We
will expound on how this methodology exhibits itself within the
LT2 ecosystem and what successes and failures have resulted
from executing under this methodology in the past.
The CPM team defined five execution methodologies:

• Isolation

• Awareness

• Shared Delivery

• Shared Baseline

• Collaborative Development

In the LT2 product line, the current desired execution
methodology is predominantly collaborative development. This
has been achieved to varying degrees across most efforts within
the LT2 product line.

Four representative LT2 product line products provide specific
context for this paper, they where chosen for their breadth of
capabilities and scale of usage and deployment. These range from
individual soldier training to Brigade Combat teams of thousands
of soldiers, and live fire single range paper targets to complex
automated system of instrumented targets, as well as simulated
engagements between instrumented forces. The representative
systems are:

• Combat Training Center Instrumentation System (CTC-
IS) provides advanced collective force-on-force and live
fire training to Brigade Combat Teams and Echelons
above Division in realistic battlefield conditions.

• Digital Ranges Training System (DRTS) supports live
fire exercises and individual and crew-served weapon
skill qualification or sustainment, and collective
Training Events.

• Homestation Instrumentation Training System (HITS)
provides Battalion/Taskforce and below, live combined
arms Force-On-Force training exercise and test events at
home stations and deployed training sites.

• Targetry Range Automated Control and Recording
(TRACR) System is a software product that supports the
planning, execution, and review of scenario based
training at non-instrumented army training ranges.

2. Isolation
The most natural execution methodology is for product teams to
operate independently. The state is where many, if not most,
product line organizations find themselves at the beginning.
However, our experience is that this may continue to occur, in
pockets, within organizations regardless of the presence of a
product line or product teams. Further, this model can be an
effective one when used appropriately [10]. Isolated efforts
typically focus on unique technology that does not already exist in
the product line.

The U.S. Army often fosters isolation by issuing independent
contracts for systems even if there is potential requirement
overlap with adjacent projects. These contract boundaries were in
place prior to the advent of LT2, and remain in place even with
the highly effective LT2 product line. Isolation is also common in
efforts that are outside of the purview of the organization
management. In the commercial world, this could come about
because of a merger or acquisition; in the government-contracting
world this is typically due to a contract from a different but
“nearby” program office asking for work in or close to the domain
of the product line. As can be seen from the 4 representative
products selected for comparison in this paper, it’s simple to draw
logical boundaries around systems based on size, deployment
style or training objective. Although LT2 has been successful in
consolidating these products, often the organizations responsible
for initial contracting don’t recognize the potential capabilities
overlap. Because these contracts are not mandated to participate in
the product line they are sometimes implemented independently.

2.1 The Good
When executing independently, teams have the freedom to
operate without the constraints imposed by other teams. Teams
can effectively control their own destiny. During execution
decisions are made quickly to meet the needs of specific and
familiar customers and end users. Opportunistic reuse occurs
through dependency selection and inheritance from previous
efforts. Teams develop expertise that improves their efficiency –
albeit efficiency at producing an isolated product – during the
development cycle. Rubin et al. cite low upfront investment, reuse
of verified code (and other types of engineering assets as well),
rapid development, and independent development as advantages
of this approach [10].

Figure 3 The cumulative cost of independent development vs.

product line development

2.2 The Bad
The product line literature has been vocal and strident about the
disadvantages of independent development; in fact, product line
engineering’s reason for being can be seen as overcoming the
deficiencies of development based on one-time reuse [4][13].
Fundamentally, the problem is that reuse happens when a project
starts, but the commonality among the various products is not
exploited after that. The products, instead of continuing to share
assets and gain advantage from the commonality, spiral off on
their own evolutionary trajectories. The organizational effort for a
group of n similar project is n times the cost of a single project.
Adding and staffing a new project costs the same as staffing the
first project, whereas under the product line paradigm the cost of a
new project adds only a marginal cost. This understanding is
represented in the familiar graph of product line economics, which
first appeared in [14], shown in Figure 3.

A drawback of this approach, often overlooked, is that the price of
isolation may never be recognized. Product teams are accountable
only to themselves and their customers. If the customer is happy,
then there is no incentive to change and if the customers remain,
the product thrives. However, advancement of the product is
dependent entirely on the single product team. If the team, or key
resources, are pulled away to support another project, or if
funding is no longer available, advancement of the product
stagnates. Other competitive teams may dominate the market
space, even competition from within the organization.

From an individual product execution standpoint, isolation is
often not viewed as failure. If the product line engineering
approach is unknown, why would isolated teams do anything
else? But from a larger organizational standpoint there is failure.
The failure is not in the successful fielding of a system – the
systems are successfully fielded – or the effectiveness of the
training provide by the system – the training is extremely
effective. The failure is the missed opportunity for future sharing
and exploitation of commonality, and in the additional cost
required to re-implement existing capabilities. Prior to and even at
the beginning of the LT2 product line, this approach was
acceptable, but now the occurrence of these efforts is, we find,
typically due to lack of education on the contracting side or the
not-invented-here pride of the executing team.

2.3 Use in LT2
LT2 received a requirement for a sound effects simulator project,
which was centered on adding a new capability to generate
realistic battlefield sounds at very high decibel levels. LT2
responded by encapsulating that new capability, establishing an
expert team for quick execution, and leveraging standards to
ensure that the final product could be incorporated without
negative impact into the (one) existing product that needed it.
Even under the umbrella of a very successful product line effort,
this capability was developed in a product-specific way to serve
the needs of that product in the timeliest way possible.

3. Awareness
The first step in migrating to a product line execution strategy is
to ensure there is awareness of other teams operating within the
domain. Awareness does not mean launching an internet web
search to discover what other teams are doing and trying to
leverage their experiences. Awareness begins when organizations
communicate and share information among teams on a regular,
fostered, and repeated basis. Within organizations, information
sharing typically starts with teams sharing non-code artifacts such
as study results, or loaning experts from one team to another.

Awareness includes action, and is achieved when influences
between teams ultimately affect the implementation of delivered
products.

3.1 The Good
Effective awareness results when products are aligned with each
other in both implantation and philosophy. Awareness encourages
adoption and compatibility though standardization of interfaces,
agreement on data types and design strategies. Awareness doesn’t
eliminate, but does reduce, the re-implementation of high profile
system capabilities such as critical algorithms, presentation layers
and external system integration. Sharing of systems’ libraries and
dependencies are encouraged. Because teams are operating
independently, the impact to change is self-contained. Decisions
about when to incorporate external inputs are weighed against
internally defined performance goals.

Awareness need not happen under a heavy management hand.
Clements and Northrop recount the case of product line sharing
that began when two friends and colleagues, managing separate
but similar projects in the same company, casually discovered the
repetitive work they were each doing while having lunch together.
They decided to cooperate and collaborate rather than continue to
work independently, and a product line was born ([2], sidebar
“Lunching and Institutionalizing,”).

The discovery meetings held under the auspices of an awareness
regime can also be seen as a dress rehearsal for the kind of regular
coordination meetings that are required under a full-fledged
product line effort.

3.2 The Bad
The initial benefits of awareness can mask the downsides. Teams
still can incur high amounts of rework. Reuse is touted but is
opportunistic. Typically, independent teams encounter and solve
the same problems without knowing it. Because teams are looking
forward to solve the next problem that they encounter, under an
informal awareness regime little feedback is provided to other
teams who have yet to solve the same problem. The overhead of
meetings to keep all teams up to date can become burdensome,
especially as deadlines approach and already taxed staff focus on
their immediate assignments. Such meetings can also yield little
benefit since the reuse they might foster is, again, opportunistic.

3.3 How to Enable
Despite its drawbacks, awareness is still a step up from
independent development and should be nourished on the way to
bigger and better things. The lunching example notwithstanding,
the most effective movement of teams from isolation to awareness
requires active intervention by higher level management. Though
sometimes teams seek outside inputs and perspectives on their
own, this is not the norm since the focus on executing tasks at
hand outweighs the expected return for time spent collecting
external inputs. Thus, the need for management intervention.
Teams do however have a natural inclination to share when they
have something unique to contribute to the community (or when
they perceive that the community has something to contribute to
them!).

A common architecture for teams is a powerful lever to motivate
awareness of commonality. Under a common architecture, teams
will not be surprised to learn that opportunities to exploit
commonality are rife. If they are able to begin the sharing that is
possible, they can then to focus on the unique capabilities that
define their system. This payback motivates further sharing
(which, under the awareness paradigm is still voluntary and
opportunistic and needs to be nurtured since it is not yet planned

or mandated). This helps to enforce the unique contributions of
teams giving back to the community and provides a common
language for communication.

In this way, the voluntary, community-aware awareness paradigm
resembles the early “co-op” model of product lines from Hewlett
Packard’s Owen Firmware Cooperative [11].

3.4 Use in LT2
Within LT2 PEO-STRI established a dedicated contract to
develop a Common Training Instrumentation Architecture (CTIA)
that provided core life training capabilities enabling product teams
to focus on the core mission of providing tailored training systems
to end users. In Figure 4, the yellow bars indicate the quantity of
each product’s source code (x1M SLOC) provided by CTIA to
accomplish common live training capabilities.

Figure 4 Reuse in LT2 Products under the CTIA common

architecture

The LT2 Portal (Figure 5) is the primary mechanism for
communicating information between live training product teams,
including community news and events. Collaboration areas on the
portal are tailored to specific topics and forums provide easy
access to product teams. By providing a neutral communications
path and quality information, the LT2 Portal has encouraged
awareness and continues to greatly accelerate the development of
training systems even outside of the LT2 product line.

Figure 5 The front page of the LT2 Portal (www.lt2portal.org)

Establishment of weekly Core Asset Working Group (CAWG)
meetings has provided regular and frequent interaction between
product teams. The value of the CAWG is in the formalization of

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Architecture)Reuse)by)Product

CTIA,Reuse Component,Reuse

good engineering practices across the domain and the sense of
community that frequently leads to relevant and productive
communications between teams from different branches of
government and disconnected, competitive contractors, that would
otherwise have no mechanism for casual interaction at the
executing level.
The LT2 Product Line also maintains a Standards Working Group
that is dedicated specifically to interoperability standards, internal
and external to the live training domain. This model of fostered
awareness mimics other industry working groups. The downside
to open community working groups are that they are typically
attended by organizations either currently under contract to
interface with the standard or external parties with a vested
interest in influencing standard for future gain. Inactive
contractors are sometimes marginalized with negative impacts.
This is mitigated by timing events to coincide with contract
proposal schedules and by dedicating technical engineers who
participate in standards development as neutral parties.

4. Shared Delivery
Shared delivery occurs when all product teams provide their
outputs to a common technology shelf for consumption by the
community. A technology shelf could be a shared internal portal
or an app store for a deployment platform. In the context of
product line engineering, shared delivery almost always includes
the source that generates the delivered products. When teams
move from awareness to a shared delivery methodology they are
intrinsically compared to each other. Differences between
delivered products are presented such that they convey value, not
as a product that meets a specific objective, but instead by how
the components meet the goals of the domain.

4.1 The Good
Shared delivery means that products must meet a level of quality
expected by the community. Teams begin to consume others'
contributions to the technology shelf in an effort to reduce their
internal development costs. Duplicate functionality is often
eliminated by the product line teams picking the "Best of Breed"
offering and encouraging the consolidation of that offering’s
capabilities into a single component. As interdependencies
increase and multiple product teams incorporate common
components into their products, more knowledge is shared across
product teams. Reuse is more holistic in shared delivery, enabling
substantial cost avoidance and return on investment when
deploying new products from the shared collection.

The shared delivery paradigm also makes it much more easy for
multiple contractors to cooperate, whereas simple awareness
usually only applies within the walls of a single organization.

4.2 The Bad
Despite its advantages, shared delivery is still a paradigm based
on opportunistic (instead of planned, strategic) reuse. Coarse-
grained reuse in a shared delivery model is based on the clone-
and-own of the previously released components in the technology
shelf. Divergence of products occurs because teams fixing the
same bugs and adding enhancements do not deliver their updates
to the shared collection until their development cycle is complete.
Depending on the magnitude of the changes, merging divergent
components back together is often prohibitive. Back merging is
acceptable when product teams execute sequentially or the
number of teams is small. As the number of teams participating
increases and the frequency of change is accelerated, or when
development cycles for teams become very long in-between
deliveries, this model quickly becomes unsustainable.

In the case of government contracting it's common for
government owned source code to be provided as a contract
deliverable; however, this source code is not easily distributed to
other members of the community and is typically intended for
handover to a subsequent contractor for post-deployment support
and sustainment. This model makes it easy for contractors to
remain the experts on the product they delivered, to the extent that
it becomes very hard for other contractors to continue
development or reuse the developed capabilities. By enforcing
shared delivery as part of the statement of work when the contract
is let, the contractor is held accountable for their delivered
products and the community can obtain access without needing
explicit information about the effort or the additional overhead of
cost and schedule of getting delivered software handed over to
another contractor.

4.3 How to Enable
Shared delivery is a natural and incremental extension to the
awareness methodology, requiring only marginally more
management mandate and community-directed volunteerism.
Mandating product delivery to the common technology shelf must
be a directed form the over-arching organization. The barrier to
delivery must be very low to prevent the step of sharing being
viewed as adding unnecessary burden. The organization must
support the shared collection and keep it relevant to the
community. Relevancy is enhanced by embedding the shared
collection into an existing source of domain information such as a
community portal, forum, or collaboration area. By making the
delivered items an intrinsic part of the ecosystem, the shelf
remains relevant and active.

4.4 Use in LT2
For the Live Training community the LT2 Portal is the technology
shelf and has been a key contributor in breaking through the
barrier to inter contractor sharing. By mandating delivery to the
LT2 Portal in all statements of work the community has been able
to significantly increase it's effectiveness in fielding training
products. Because the community has access to established
components that are targeted specifically to the domain, the
customer has been able to issues contracts tailored to the
development of specific training enhancements without having to
burden themselves with the up front cost of deploying the basic
capabilities that have been fielded numerous times before on other
contracts. Figure 6 shows the number of reused common
components that are fielded with each LT2 product. The largest
systems consume the most common components, products
tailored to smaller training environments are able to consume only
targeted portions of the superset. LT2 has been able to field
products composed entirely of reused code with little to no new
development on the part of the fielding project. The recent
contract to field an updated Live Fire system to the National
Training Center leveraged capabilities, already deployed to small
unit live fire ranges, to a battalion-level training site with minor
updates. This targeted effort was able to leverage contractors that
did not develop the initial capability and add the small portion of
new requirements with very little investment and risk.
Failures for shared delivery are typically encountered when the
technology shelf is too broad and the contributions do not adhere
to a common standard.

Figure 6 Component Reuse from Shared Delivery

For example, internal to General Dynamics an effort to reduce
development and sustainment costs across projects ultimately
resulted in less than expected adoption due to the extremely
diverse nature of the contracts being executed. For example,
blending of embedded satellite communications, battlefield
simulation and air traffic control capabilities into training systems
ultimately resulted in the technology shelf being unused by most
and useful only for a small subset of contracts.

Other failures are typically due to product teams that refuse to
contribute. These teams have a market that, although overlapping,
is perceived to be uniquely better or different from the rest of the
community. Examples like this in LT2 resulted in contractors
fielding systems that are unsustainable by the community without
significant additional investment. These systems are hindered due
to the single project’s funding to advance the system and
subsequently get surpassed in capability and quality by the
community supported product line.

5. Shared Baseline
As teams being to incorporate each other’s products from the
shared set of core assets under the shared delivery paradigm, the
need to accelerate the inclusion of changes due to fixes and
feature request drives to integrate earlier in the development
cycle. Waiting for external teams to deliver products becomes a
bottleneck.

This bottleneck is broken when baselines are merged into a single
source repository2 that all teams are concurrently working from to
generate their products. The baseline is managed by a single
organization that is responsible for baseline integrity.
Consolidating configuration and data management for product
teams into a single core team reduces the cost to individual
products. Figure 7 shows the CTC and HITS development teams
making changes to the share baseline of the 2D Map core asset,
which is then incorporated into the release of the respective
products.

Additionally, as product teams become more intertwined, requests
for changes become request to make the change themselves and
the lines distinguishing ownership of core assets becomes less
clear.

2 For LT2 the source repository is the one of most significance, but the

point applies to repositories for all kinds of shared assets.

Figure 7 Changes to a Shared Baseline by multiple product

teams

5.1 The Good
A distinguishing benefit of a shared repository is that product
teams are no longer dependent on other teams’ development
cycles to release to a shard collection before getting the latest
version of a common component. Fixes to the baseline are added
as they are validated and become immediately incorporated into
all consumers’ products. As the number of consumers of the
common baseline grow the amount of testing increases, detecting
more defects, which in turn increases the quality of the baseline.
Teams spend the time that was dedicated to developing duplicate
capabilities to improving the baseline and adding enhancements.
The baseline grows to support a larger community and the impact
of re-composing capabilities into new products becomes much
lower. Products targeted to small user communities, that would
have been unable to independently fund a new product, now
provide very high quality tailored training with minimal
investment.

In addition, the blurring of the lines of ownership of the core
assets is a precursor to true shared asset teams whose purview is
the entire portfolio and not specific products. CPM has been
executing the majority of the product sustainment activities from a
shared baseline using features to encapsulate product specific
variation. Currently this is enabling teams to expect 3 times the
number of fixes returned to their baseline by other product teams
than they would have executing independently. Defects found in
the field have dramatically reduced and product quality is
increased. This is shown in Figure 8.

5.2 The Bad
The role of the repository gatekeeper is critical to the integrity and
responsiveness of the baseline. Releases from the baseline must be
coordinated to ensure that all required changes are merged prior to
the baseline freezes. Coordination of the changes and validation of
changes becomes burdensome as products are frequently required
to validate changes that were made by other teams who have not
yet released. The overhead to meet stringent processes for
committing to the baseline becomes excessively high, also
developing teams frequently do not fully understand all possible

60 60

25

43 43

53

42

10 13 16
11 12

40 43

10

Common%Component%Reuse%by%Products Shared
Core)Asset)Baseline

(e.g.)2D)Map)

CTC)
Needs

HITS
Needs

CTC)
Team

HITS
Team

HITS
Release

CTC
Release

Impacts
Analysis

Impacts
Analysis

situations where their components will be incorporated into other
products, resulting in undetected defects and additional rework.
The number of coordination meetings is increased to mitigate
these issues; this becomes a burden as the number of active
product teams increases.

5.3 How to Enable
Migrating to a shared baseline requires having the process and
tools in place to make it successful. CPM instantiated a
community accessible central repository actuated from a common
feature model. The shared assets are endowed with variation
points, which are places in an asset where a product-specific
instance must differ in order to support the specific features of a
product. For LT2 we chose Gears as our feature modeling tool
and product configuration [2]. Centrally managing product
variation using feature models enabled product teams to continue
executing without sacrificing the individually delivered products.

On top of the tools, LT2 established a strict set of processes
including merging rules that prevents unintended changes making
their way into the common baseline. Strict adherence by product
teams and technical stopgaps to prevent unintentional baseline
contamination are critical to product teams gaining the confidence
necessary for the shared baseline to be successful. Having an
open community that has already become indoctrinated through
the Awareness and Shared Delivery methodologies makes gaining
confidence less challenging; we believe that attempts to converge
baselines prior to gaining this kind of confidence will be much
more difficult and may not be successful.

In the case of LT2, we found pockets of shared baselines to
already exist in the environment. Prior to CPM the "TRACR" and
"HITS" product baselines were already shared across similar

projects internal to the executing contractors. Merging the HITS
baseline in with the Common CPM baseline meant establishing
confidence between contractors where confidence in the smaller
shared baseline already existed.
A significant concern when migrating to a common shared
baseline is that the constituent members must perceive intrinsic
value in migrating. Even with flawless technology and a high
degree of baseline confidence there is risk associated with giving
up control of your configuration management baseline to a third
party. This risk must be lower than the benefit of the shared
baseline. In LT2 this added value is clearly seen by the
acceleration of fixes and features to the baseline as new teams
join.

5.4 Use in LT2
Prior to the CPM program the baselines for the CTIA, CTC, and
DRTS projects were maintained as separate baselines at the
Integrated Development Environment facility. This is a
government-run development facility providing an integrated lab
for LT2 development and sustainment. Programs either have
resident labs in the facility or utilize its capabilities remotely. As a
badgeless facility that accommodates multiple contractors, the
IDE provides improved collaboration, software P/L management,
a co-located workforce, and significant cost reductions due to
shared lab space, shared licenses, IT equipment, reduced facilities
overhead, and resource sharing.

These baselines were loosely coupled. Both CTC and DRTS
consumed and contributed to CTIA but the perceived value of
complete consolidation did not outweigh the perceived risk. There
was no single gatekeeper responsible for the baseline integrity and
teams did not coordinate changes. Costly merges were the norm,

DRTS 2.6.3
4/2013

2.2X Reuse

Product teams executing
PDSS PTR fixes

HITS 3.0.0
12/2012

2.3X Reuse

HITS 3.1.0
08/2013

3.5 X Reuse

Metrics tracked at CPM level
ensures baseline quality

CTC 5.1.0
6/2013

1.8 X Reuse

DRTS 2.5.0
2/2013

1.3X Reuse

44

27

10

3
7

37

14
28

15

18
17

57

17

2723
HITS 3.1 is comprised of

fixes from all products

Figure 8 Product Releases from a shared baseline.

and component divergence proliferated. With CPM, the baselines
merged and were controlled by a single configuration
management team. The use of Gears enabled teams to encapsulate
change and continue developing with minimal impact to their
deployed configuration. Initially the value was low as only 3
teams were contributing changes, and changes were mostly
isolated to each teams most important components. Due to earlier
divergence, many of the most important components had
capability overlap but were maintained independently.

At the advent of CPM, the DRTS, CTC, and CTIA baselines were
fully merged into a common CPM Baseline. Additionally the
HITS, ETC, and OneTESS baselines were merged into the CPM
baseline and no longer independently maintained at contractor
sites. The overlap of component reuse increased dramatically, as
shown in Figure 9. Subsequently defect detection and fixes
accelerated greatly increasing baseline quality and team
confidence. The acceleration of positive change and increasing
baseline quality tipped the scales of perceived value, greatly
outweighing the perceived risk of the shared baseline. This trend
continues with each additional team working from the shared
baseline that now supports, on average, seven concurrent active
products.

Figure 9 LT2 Repository Consolidation

6. Collaborative Development
When executing in a collaborative development methodology,
teams are intertwined and function not as independent actors with
individual product agendas but a single organization executing in
concert to address the concerns of the community that the product
line serves. Teams are centrally governed and directed form a
consolidated tasking schedule. Implementations are strategic and
evaluated with full consideration for planned reuse and multiple
intended deployment configurations. Collaborative development
means decisions about enhancements and fixes to implement are
considered across the product line and evaluated against all
available resources. Figure 10 shows the inputs from multiple
product teams being triaged and prioritized by a collaborative
development team. These needs are then provided to the
implementation team for incorporation into the same shared
baseline discussed earlier. Core Assets are released from the
baseline to ensure that they support the needs of all consuming
products without each product team needing to perform impact
analysis on each baseline change.

Collaborative development represents the full realization of a
product line engineering factory paradigm. Under this paradigm,
shared asset engineering teams manage assets scoped for the
entire product portfolio. As in the shared baseline methodology,
feature models are used to exercise variation points in the assets to
produce product-specific instances.

Figure 10 Collaborative Development supporting multiple

products from a single baseline

6.1 The Good
By executing collaboratively, product teams focus on customer
and end user needs. Needs are reported to the factory team,
isolating products from the details of the implementation and
enabling product teams to plan for longer term goals. The teams
executing the changes are arranged so that they are focused on the
expertise necessary to support the core assets in the product line
rather than by historic product affiliation. By shifting
accountability for deploying capabilities, factory teams ensure that
the most qualified resources are applied to problems no matter
what product team is funding the change. The efficiencies of this
methodology are measured by affectivity across the entire product
line and cost avoidance metrics are applied to encourage
implementations that benefit the most products possible.

The factory paradigm is intuitive to understand and therefore easy
to teach. It helps the entire organization have a common vision
about how the organization does business and produces its
portfolio. It also invites conversations and discussions about
aspects of the product line outside the scope of “mere”
development, such as how best to educate the customers about the
product line approach and how cooperation among customers
would benefit all customers.

Proactively cross-pollinating resources without product
boundaries allows for members to be used more effectively while
acknowledging that their expertise in a particular area is
recognized and valued across the entire factory.

6.2 The Bad
The management of the baseline requires that all core asset teams
remain in continuous communication and as the factory teams
grow they can begin to encounter the same repeated
implementations and boundaries as were evident in product
centric development. To counter this tendency additional
governance overhead must be expended by the factory to ensure
that executing teams are coordinating.

6.3 How to Enable
Collaborative development means relinquishing the control of
almost all product development to a factory of dedicated core

0

2

4

6

8

10

12

14

Without-LT2 Prior-to-CPM Current Goal

Source-Code-Repositories Defects-Tracking-Repositories

Collaborative+Development
Core+Asset+Baseline

(e.g.+2D+Map)

CTC+
Needs

HITS
Release

Collaborative+Developm
ent+Team

+
Priority+Alignm

ent+and+DeBconfliction

HITS
Needs

Core+Asset+
Baseline
Release

CTC
Release

DRTS
Needs

asset developers. The project teams are now genuine business
teams that can access and inform but not direct the execution
teams. The focus of the product teams must change from product
engineering to product advocacy with the stated goals of
increasing product utilization by understanding customer needs
that are not influenced by engineering constraints. By separating
the business need from the engineering activities, product teams
are genuinely focused on the actual customer. Tradeoffs between
user desires and delivered products are handled internally to the
organization and no longer conceded to by the customer. Shifting
the product team’s focus towards the customer and away from the
factory team is encouraged by measuring performance of the
product team, not by the number of fixed of features deployed but
instead on non-technical metrics such as the number of training
exercises executed or the number of enhancements request that
grow system capabilities.

None of this can happen if the value proposition is not
substantiated by the actual cost of system deployment for equal
capabilities being lessened, or equal cost investments providing
greater system capabilities. Technical performance measures must
be maintained by the executing teams to ensure that the product
teams' critical needs are met by the factory and that the execution
of the factory is more efficient than a smaller dedicated team.
Increasing efficiency includes ensuring that core skill sets are
leveraged across the entire factory so that problems are addressed
in the most effective resources. In aggregate, the use of dedicated
experts that aren't pigeon-holed working on a specific project
create substantial savings in time and rework while increasing the
exposure to and knowledge of resources across the factory.

Leadership must maintain a unified schedule across all efforts for
tracking work at the task level. Task selection must be evaluated
with all products in mind. Shifting leadership resources between
product teams prior to the transition to collaborative development
reduces the impact after the transition to collaborative
development. Switching of leadership resources can be made less
painful by executing switches during times when product teams
are executing efficiently and the subordinate teams have enough
momentum to indoctrinate new leaders with minimal impact.

6.4 Use in LT2
Not all teams have successfully migrated to collaborative
development in CPM. Smaller teams have been more effective at
the transition because the limited number of resources available to
them has mandated a holistic approach to the development and
support of core assets. Larger functional groups tend to be the
primary expense, and therefore focus, of product team
management. Because larger teams are able to keep resources
dedicated to a single team they are more directly associated with
the identity of a specific product and (in our experience) the
hardest to wean off that product-focused mentality. This identity
association results in trends among developers to continue their
previous associations and assumption of direction from product
team leadership instead of factory lane leadership. Activities as
innocuous as going to lunch strengthen ties and foster product-
centric discussions.

Calculation of performance metrics performance has encouraged
collaborative development efforts. Keeping focus on execution
metrics that relate to specific short term goals such as delivering
on time and maintaining a high quality baseline are retained from
previous execution methodologies. Figure 8 shows the metrics
calculations for products providing collaborative development of
baseline fixes back to the shared repository. As products release
from the common baseline, the focus on constituent makeup of

the fixes indicates the degree of change that contributed to the
quality of each product by the contributions of others. New
metrics that measure performance against the conventional
execution methodologies have been successful in the past and are
good for conveying easy to understand cost avoidance within the
product line. The LT2 product line is now also measuring
performance against the ideal product line to generate a single
massive product that comprises all features available.

This measurement encourages elimination of redundancy by
quantifying the cost reduction associated with eliminating
duplication. This approach is particularly appealing within LT2
because products are not "purchased.” Feature selection is based
on end user needs that vary depending on the size of the unit
being trained, environment, unit type, and training duration. In
this environment the primary drivers for feature selection are
reducing development and sustainment costs while maximizing
training capabilities and effectiveness.

7. Conclusion
Each product line execution methodology that has been revealed
throughout the history of the LT2 product line has shown itself to
be effective at delivering high quality training products to the end
user. Empowering product teams to drive to a more effective state
of product line engineering can only be accomplished when
product teams are motivated to change. Figure 11 summarizes the
methodologies and the enablers for evolving to the next level. By
charactering the methodologies identified in this paper and using
concrete examples that are clearly articulated and familiar to
product teams CPM has been able to build awareness and
formalize the process of improvement. Speed of migration to the
product line is increased and what took LT2 10 years to
accomplish for software is taking 1 to 2 years for other functional
areas using this approach. Newly indoctrinated products into the
product line are being easily assimilated, and products that are left
untended during periods of inactivity are able to restart
immediately without having to catch up to the latest baseline.

Cost avoidance data shows that LT2 is on the right track. This
continuing transformation through the product line execution
methodologies discussed in this paper has generated a significant
return on investment to date within PM TRADE’s live training
system acquisition portfolio. The early approaches after LT2 was
launched as a product line generated over $300 million in cost
avoidance across the development of live training systems that
include Combat Training Centers Instrumentation Systems, Home
Station Instrumentation Systems, Instrumented Ranges, and
Targetry. The approaches put in place under the purview of CPM
are projected to save another $200 million over the next 2-5 years3
[3].

3 These figures are based on industry standard estimates of code

cost, and are calculated assuming that post-deployment software
support constitutes 70% of development cost and a life
expectancy of 10 years. See [5] for a more detailed explanation.

8. Acknowledgements
The authors wish to thank Paul Clements and Charles Krueger
from BigLever Software for their continued support and
partnership on CPM in refining and improving the LT2 product
line. The execution methodologies extracted though the analysis
of LT2 product line evolution are largely influenced by their
expertise in product line engineering practices.

9. References
[1] Bergey, J., Cohen, S., Donohoe, P., & Jones, L. Software

Product Lines: Report of the 2010 U.S. Army Software
Product Line Workshop (CMU/SEC-2010-TR-014).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University.

[2] BigLever Software, “BigLever Software Gears,”
http://www.biglever.com/solution/product.html

[3] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J., Winkler, A. “Second Generation
Product Line Engineering Takes Hold in the DoD,”
Crosstalk – The Journal of Defense Software Engineering,
vol. 27, no. 1, January/February 2014.

[4] Clements, P.; Northrop, L. Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002.

[5] Dillon, M.; Rivera, J; Darbin R, Clinger, B. Maximizing U.S.
Army Return on Investment Utilizing Software Product-Line
Approach. I/ITSEC, 2012.

[6] Lanman, J., Becker, B., Samper, W. Joint Service
Partnership: Extending the Live Training Transformation
Product Line. 2009 Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC), Orlando,
FL.

[7] Lanman, J., Darbin, R., Rivera, J., Clements, P., Krueger, C.
The Challenges of Applying Service Orientation to the
Army's Live Training Software Product Line. 2013 Software
Product Line Conference (SPLC), Association for
Computing Machinery (ACM), Tokyo, Japan.

[8] Lanman, J., Kemper, B. Second Generation Paradigm: By
staying ahead of product growth, PEO STRI improves
efficiencies. Army Journal for Acquisition, Logistics, &
Technology (AL&T). Department of the Army, Pgs. 110-
114. April 2012.

[9] Lanman, J., Kemper, B., Rivera, J., Krueger, C. Employing
the Second Generation Software Product-line for Live
Training Transformation. 2011 Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC),
Orlando, FL.

[10] Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki,
K. , Dubinsky, Y. “An Exploratory Study of Cloning in
Industrial Software Product Lines, CSMR 2013.

[11] Toft, P., Coleman, D., & Ohta, J. “A Cooperative Model for
Cross-Divisional Product Development for a Software
Product Line,” Donohoe, P., ed., Software Product Lines:
Proceedings of the First Software Product Line Conference
(SPLC1). Denver, Colorado, August 28-31 2000. Boston,
Ma.: Kluwer Academic Publishers, 2000: 111-132.

[12] U.S. Army PEO-STRI, “Live Training Transformation,”
http://www.peostri.army.mil/PM-TRADE/lt2_productline.jsp

[13] Van der Linden, F., Schmid, K., Rommes, E. Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering, Springer, 2007.

[14] Weiss, D. M. & and Lai, C. T. R. Software Product-Line
Engineering: A Family-Based Software Development
Process. Reading, MA: Addison-Wesley, 1999.

Figure 11 Migration between product line methodologies.

Isolation Awareness- Shared-Delivery Shared-Baseline Collaborative-
Development

Ch
ar
ac
te
ris
tic
s

Independent' teams'
with'discrete'goals.

Aligns'well'to'
government'

contracting'paradigm.'

Communication'between'
teams.'

Sharing'of'support'artifacts.

Loaning'resources'across'
product'teams.

Common'technology'
shelf.

Shared'access'to'source'
and'supporting'artifacts.'

Single'baseline'shared'by'
product'teams.

Consolidated'CM'ensuring'
baseline'quality.'

Feature'based'product'
actuation.

Single'team'
implementing'multiple'

product'inputs.

ProAactive'prioritization'
and'agreement'across'

products.

Be
ne
fit
s

Freedom'from'external'
influence.

Low'upAfront'
investment.

No'reliance'on'others'
for'individual'success.

Standardization'of'
interfaces,'and'data'types.
Alignment'of'high'level'

decisions.

No'reliance'on'others' for'
individual'success.

Reduced' initial'
development'costs'
though'reuse.

Reduced'duplicate'
capability'development.

Immediate'incorporation'
of'changes'across'PL.

Eliminates'post'
development'merging.'

Faster'issue'identification'
&'resolution.'

Increased'sharing,'
reduced'

implementation.

Product'teams'focus'on'
customer'needs'not'
technical'solutions

En
ab
le
rs
-to

-E
vo
lu
tio

n Management'intervention' to'
determine'effort'overlap.'

Fostered'collaboration'and'sharing'
of'resources.

Common'architecture'and'standard'
interfaces.

Management'emphasizes'
capability'reuse'over'new'

development.

Focus'development'efforts'
on'missing'domain'

capabilities.

Establish'single'CM'
authority.

Feature'models'to'
manage'product'variation.

Merging'divergent'
baselines.

Product'teams'separated'from'
development'teams.'

Product'needs'determined'
independent'of'implementation.
Focus'on'overall'(not'product)'cost'

reduction.'

