
The Challenges of Applying Service Orientation to the
U.S. Army's Live Training Software Product Line

Jeremy Lanman

U.S. Army PEO STRI
12350 Research Parkway

Orlando, FL 32826
+1 407 384 5307

Jeremy.Lanman@us.army.mil

Rowland Darbin
Jorge Rivera

General Dynamics
 12001 Research Parkway, Suite 500,

Orlando, FL 32826
+1 407 275 4820

 Rowland.Darbin@gdc4s.com
jorge.rivera@gdc4s.com

Paul Clements
Charles Krueger
BigLever Software

10500 Laurel Hill Cove
Austin, Texas 78730 USA

+1 512 426 2227

pclements@biglever.com
ckrueger@biglever.com

ABSTRACT
Live Training Transformation (LT2) is the product line strategy
put in place by the United States Army Program Executive Office
for Simulation, Training and Instrumentation (PEO STRI). The
purpose of the LT2 product line is to provide a common set of
core assets including architectures, software components,
standards and processes that form the basis of all Army Live
Training systems. As products consuming LT2 core assets evolve
to meet the latest requirements of the military live training
community, changes to the core product line architecture must
also be made. Based on thorough analysis of the LT2 core
capabilities and user trends toward web-enabled and mobile
computing technologies, a Service Oriented Architecture (SOA)
strategy was identified and adopted as the objective architecture
for the evolving LT2 product line. Future success of the LT2
product line now depends on the alignment of product line
engineering concepts with the business and technical benefits of
SOA, and to ensure that systematic reuse continues to provide
substantial return-on-investment for the Army. This paper
addresses the challenges of adopting SOA into an existing
software product line, the unique circumstances of the LT2 SOA
environment, and present a set of analysis and design
considerations for the product line engineering community.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line engineering,
software product lines, feature modeling, hierarchical product
lines

General Terms
Management, Design, Economics.

Keywords
Product line engineering, software product lines, feature

modeling, feature profiles, bill-of-features, hierarchical product
lines, variation points, product baselines, product portfolio,
product configurator, product derivation, product audit, second
generation product line engineering

1. INTRODUCTION TO LT2
Live Training Transformation (LT2) [9] is the product line
strategy put in place by the United States Army Program
Executive Office for Simulation, Training and Instrumentation
(PEO STRI). Through the use of LT2, the Army’s office of the
Project Manager (for) Training Devices (PM TRADE) builds and
maintains live training systems in support of homestation training,
deployed training, urban operations training, Maneuver Combat
Training Center (MCTC) training and instrumented live-fire range
training.

Prior to the implementation of the LT2 product line, live training
systems and devices consisted largely of products developed
separately by a variety of different manufacturers to comply with
disparate requirement sets and were designed and implemented
without a common framework. Commonality was not attempted
and interoperability among systems was rare, difficult, and costly
to achieve. Configuration changes to both hardware and software
were often performed on-site as part of the sustainment effort,
making configuration control virtually impossible.

Recognition of the commonalty of requirements between training
systems and the degree of redundant work effort among
contractors led to the establishment of common architecture
frameworks, the Common Training Instrumentation Architecture
(CTIA) and the Future Army System of Integrated Targets
(FASIT), that drastically improved the reusability of developed
training components. These components formed a technology
shelf that enabled a high degree of reuse between products. As the
number of products using the technology shelf increased, so did
the corresponding complexity of managing the common software
baselines and product feature sets.

The product teams using CTIA were uncoordinated in their
efforts, resulting in redundant implementation that created similar
features and resolved many of the same bugs. While still
drastically more efficient than stovepipe development, it became
evident that greater efficiencies could be gained by implementing
a common governance strategy across the LT2 domain.

© 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SPLC 2013, August 26 - 30 2013, Tokyo, Japan

Copyright 2013 ACM 978-1-4503-1968-3/13/08…$15.00.
http://dx.doi.org/10.1145/2491627.2491649

Reuse of core assets alone provides a substantial cost reduction in
the development of new products but active participation in the
lifecycle of the core assets assures that they remain relevant to
future development and applicable to the breadth of the live
training community. Controlled governance of core assets permits
changes, upgrades and fixes developed for and by one product to
be applied to others. This concept provides the inherent logistics
support benefits that derive from commonality, standardization
and interoperability including the reduction of total life cycle
costs. This continuing transformation has generated a significant
return-on-investment to date within PM TRADE’s live training
system acquisition portfolio generating an estimated $340M in
cost avoidance over an eight-year period across the development
and sustainment of 150 Live Training Systems deployed systems
worldwide.

The LT2 vision has created a family of live training systems using
a common architecture with common data, standards, processes,
and components. Going forward, the LT2 vision is to combine the
benefits of product line development with the benefits of SOA. By
embracing these mutually beneficial technologies LT2 can ensure
that systematic reuse continues to provide substantial return-on-
investment for the Army.

2. LT2 AND FIRST GENERATION
PRODUCT LINE ENGINEERING

Product Line Engineering (PLE) has roots that span at least four
decades, going back as far as Parnas’s seminal paper on product
families in 1976 [20]. We characterize some of the early and long-
standing approaches to Product Line Engineering as first-
generation. First-generation PLE (1GPLE) includes:

• A strong dichotomy between domain engineering and
application engineering, or core asset development and
product development.

• Explicit inclusion of non-software artifacts in the collection
of core assets.

• Focus on features [13] as the language to describe a product
line’s domain and a way to discriminate products from each
other

• Acknowledgment of configuration management as an
essential practice under PLE without a strong distinction
between core asset CM and product CM

These approaches have yielded a rich legacy of product line
success, as evidenced by numerous case studies
[6][11][18][21][23]. First generation product line engineering for
LT2 took the form of multiple projects reusing core assets with
governance administered through a common asset repository by
each PM TRADE Product Manager. The Product Managers were
responsible for the configuration baseline of their systems
throughout the products’ total life cycle. As with any product line,
the primary challenge is the management of the product line, not
the technological barriers. This means that the process by which
PM TRADE manages products must be deliberate, disciplined,
and coordinated in order to maximize use of common assets,
components, and subsystems in the development of new products.
PM TRADE must synchronize the production of products to gain
efficiencies, enable supporting efforts, and maintain seamless
interoperability between components, products, and systems.
Since the Product Managers’ responsible management levels were
disparate, the required coordination to ensure product line strategy
was successful, albeit challenging and painful.

Adaptation of the first generation LT2 principles was highly
successful and proved that greater gains could be attained by
embracing the second generation product line philosophy and
overcoming new obstacles that the first-generation product line
highlighted in the LT2 environment.

3. LT2 AND SECOND GENERATION
PRODUCT LINE ENGINEERING

As the primary focus of 1GPLE is effectively managing the core
assets that compose the product line, the focus of Second-
Generation Product Line Engineering (2GPLE) [5][10][14][17] is
not only on the management of the core assets but on the
philosophy of how the management of core assets should be
governed.

In the world of manufactured hard goods, a product line refers to
the variations on a common theme, where multiple similar
products are combined into one line that offers different sizes,
colors, features and functions, with a common goal of filling
customer need for a particular kind of item. The 2GPLE paradigm
strongly embraces the factory analogy. Continuing the analogy to
engineering a product line of hard goods, it is much more
effective to view systems and software product line engineering as
creating a means of production – a single system or “factory”
capable of automatically producing all of the products in a product
line – rather than viewing it as creating a multitude of interrelated
products. This idea is rendered in Figure 1.

Figure 2 shows the single production line perspective for
producing the LT2 product line; the focus is on the means of
production. Products that emerge on the right side of the diagram
are automatically produced by a singular means of production:

• Feature profiles (top) that describe optional and variable
features for the products in the product line where each
product in the product line is uniquely defined by its own
feature profile

• Shared assets (left) such as requirements, architectures,
designs, models, source code components, test cases and
documentation that can be configured and composed in
different ways to create all instances of soft assets and
products in a product line. Variation points shown within
these assets are exercised to configure them for a product
according to the features selected in the feature profile for
that product. This results in feature-based variation
management.

• Product configurator (center) that automatically composes
and configures products from the shared assets, using the
feature profiles to determine which shared assets to use and
how to configure variation points within the assets. For LT2,
the configurator is Gears [3].

In terms of Chastek, Donohoe, and McGregor’s advice for
building a production strategy [4] embracing the factory paradigm
combines at least three of their desiderata:

• “Be automated. Enable the engineers to carry out repetitive
functions quickly and correctly…”

• “Be generative. Generate low-level artifacts such as source
code and detailed documents from higher level models…”

• “Be transformative. Allow dissimilar data formats to be
aligned…” A transformative production strategy results in a
production method that uses a small number of meta-models,
preferably one, as the basis for models of various kinds of
development information.

Figure 1 2GPLE's factory paradigm (© BigLever Software)

Figure 2 LT2’s production line (© General Dynamics)

To effectively govern these variations, it was essential to develop
the factory that would create the core assets from a single
repository. Product teams shifted away from maintaining their
own repositories, fixing bugs and adding features that would have
to be merged later and instead, focused on defining the feature
profiles that made their projects unique and distinct from the
common baseline. New features and bug fixes were viewed
holistically from the product line perspective in advance and
immediately made available to the community instead of lagging
until the beginning of the next development cycle when the
previous development was merged into a baseline.

Adaptation of the 2GPLE strategies has been hugely successful
for the product teams resulting in significant cost savings from
elimination of configuration management, coding and testing
associated with expensive baseline merges. Some of the
governance problems experienced by the first-generation are still
present but to a lesser degree, and not all core assets have had
governance applied consistently. Though the governance of
requirements and testing repositories still have not yet realized the
benefits to the same degree as source code, standards, defects,
metrics and configuration management. Redundant development
and merging have been drastically reduced or eliminated entirely.
Realizations of commonalities between products are greater than
expected and variations are being used to tailor products in ways
that target the core differences in needed capabilities while still
retaining the benefits of industry collaboration.

4. LT2’S RETURN ON INVESTMENT
The LT2 Product Line strategy has generated significant return on
investment to date within PM TRADE’s live training system
acquisition portfolio. Over the last eight years, some $340 million
in cost avoidance has accrued across the development of Combat
Training Centers Instrumentation Systems, Home Station
Instrumentation Systems, Instrumented Ranges, and Targetry. The
2GPLE approach is projected to save another $200 million over
the next two to five years [8] (Figure 3).

The demonstrated success of the LT2 product line has led to
adoption by other military services including the Marine Corps
and Air Force, and proliferation of training systems to multiple
echelons within the Army [5].

5. WHY SOA?
The U.S. Department of Defense is constantly striving to improve
the training of soldiers while reducing related costs. More
specifically, three major areas of improvement have been
identified within the military simulation and training domains:

• These systems often lack the ability to interoperate with one
another unless extensive measures are taken to natively
interface them.

• When users require on-demand capability, software
applications, and upgrades, they must wait for fielding
support and personnel to provide installation on each client.

• Massive volumes of data are being stored and processed by a
variety of unmanaged clients and servers requiring excessive
physical space.

The U.S. Army in particular, is considering two strategies to
address these issues and recommend improvements: Service-
oriented architecture (SOA) and cloud computing. SOA migration
will, it is hoped, enable total system interoperability, resulting in
composable, reusable, and loosely coupled services. Cloud
computing will allow services, components, software applications,

software updates, and upgrades to be readily available where
consumers can access them as needed.

Currently, the CTIA is one of the three architectures defined by
the LT2 product line. It is used by LT2 products to define
interoperability standards among live training applications to
support force-on-force and force-on-target training. Using an
introspective approach, including honest dialog and user
feedback, it was determined that CTIA must evolve to address
technology obsolescence and meet the growing needs of the live
training community. Therefore, in order for the architecture to
meet those needs, a Service Oriented Architecture (SOA)
approach was identified as the preferred strategy. The CTIA team
conducted a series of workshops and utilized SOA training and
Human Centered Design (HCD) techniques in order to identify
and prioritize the strategic business goals and objectives for the
LT2 product line.

Moreover, the CTIA team selected and prioritized service oriented
design principles, which are being applied to the architecture in
order to achieve the goals previously mentioned. These efforts
resulted in a roadmap for the SOA migration and evolution of
CTIA to Training as a Service (TaaS). The term TaaS is used by
the U.S. Army internally and it refers to an “on-demand training
environment” delivery model in which training software and its
associated data are hosted centrally (typically in the cloud) and are
accessed by users using a thin client, normally using a web
browser over the Internet.

6. LT2 GOALS AND OBJECTIVES
Decisions to change a product must be driven by the goals and
objectives of the customer and other key stakeholders if they are
to be successful. Just as the decision to adopt a product line
approach for LT2 involved recognition of avoidable duplication,
the decision to migrate to a service oriented architecture involved
recognition of deficiencies in meeting upcoming fielding needs
for CTIA based training systems. To ensure that the adoption of
SOA addressed the true needs of the LT2 community the
architecture team, comprising key stakeholders based on influence
and interest, defined and prioritized the strategic business goals
and objectives for the Live Training Transformation architecture.
CTIA provides the foundation for this architecture; however,
business goals and objectives were extended to the LT2
community at large to ensure that the CTIA architecture aligns
with community needs. These goals were then used to determine
the priorities for the technology insertion effort.

The business goals were derived using the Goal-Question-Metric
(GQM) paradigm [1]. GQM is used to define measurements such
that:

• Resulting metrics are tailored to the LT2 organization and its
goals

• Resulting measurement data play a constructive and
instructive role within the LT2 Product Line

• Metrics and their interpretation reflect the values and the
viewpoints of the different stakeholders affected

A GQM model is a hierarchical structure (Figure 4) starting with a
goal (specifying purpose of measurement, object to be measured,
issue to be measured, and viewpoint from which the measure is
taken). Each goal is refined into several questions intended to
elaborate the issue into its major components. Each question is
then refined into metrics, some of them that can be answered
objectively through measurement, and some of them subjective.
The same metric can be used in order to answer different

questions under the same goal. Several GQM models can also
have questions and metrics in common, making sure that, when
the measure is actually taken, the different viewpoints are taken
into account correctly (i.e., the metric might have different values
when taken from different viewpoints). For each of the
measurement areas that follow, the GQM process is documented
and the details of recording and reporting the resulting metrics are
described.

The Architecture team created broad goals and used the GQM
methodology to (a) refine each goal into questions about the goal
and (b) drawing metrics that help to validate that the questions are
answered and therefore, how well the goals are being met. The
major goals for LT2 are summarized in Table 1.

Figure 4 GQM’s hierarchical model of goals, questions,

and metrics

A significant investment has already been made in CTIA and LT2
components. The business goals and architectural objectives must
retain at least some level of backwards compatibility to allow the
product line to recoup a return on investment over approximately
the next five years. Backwards compatibility may be achieved by
implementing any combination of a number of different
techniques, including compile-time (application programmer
interface), run-time (network protocols) or design-time (data
models) backwards compatibility. Although run-time backwards
compatibility may provide the least impact to fielded systems, it
might incur the greatest cost in implementing. In the past, the
product line has strived to achieve at least some level of compile-
time backwards compatibility since it provides a relatively equal
balance of cost versus benefit.

Table 1 GQM-derived goals for LT2

Goal Description

Reduce operational costs
and complexity

Focused on reducing operational
costs and complexity.

Align and support
specific product
development

Focused on using current live
training development efforts to
advance the product line by meeting
core product needs and encouraging
contributions back to the product
line.

Enable enhanced soldier
training effectiveness

Focused on increasing the training
effectiveness of the LT2 products.

Reduce development and
sustainment costs

Focused on reducing the costs
associating with building and
sustaining LT2 products.

Increase technology
agility

Focused on maximizing the ability of
the architecture to incorporate new
technology.

Leverage other Army
systems

Focused on providing ability for the
LT2 product line to leverage systems
and services that are developed by
others (i.e. virtual, constructive,
mission command or other live
training systems).

Alignment with Army Standards. The U.S. Army’s Chief
Information Officer has issued directives to implement a Common
Operating Environment in order to support cloud computing and
virtualization on the Army’s Global Network Enterprise Construct
[7]. As we evolve the LT2 product line to identify and achieve
business goals for the live training community, we must also keep
in mind the broader business goals and technology objectives for
the Army.

With these considerations it was determined that the objective
architecture would be designed using SOA principles and web
services with a shift from thick to thin clients [16]. User
applications will be able to be hosted in a web browser or run as

Figure 3 LT2 return on investment (© General Dynamics)

“apps” on mobile devices and tablets. By making this switch, the
architecture will become more flexible, scalable and simpler to
operate. These changes also support the goal of hosting some or
all of a range’s services at a Regional Training Center (RTC),
which could support multiple ranges from a common data center.

7. CHALLENGES TO ADOPTING SOA
CTIA is the foundation architecture of the LT2 product line. The
objective of any architecture should be to combine the common
parts of software development such as logging, archival, retrieval
and inter process communications and build it up to a level that
combines the business logic common to the live training domain
such as, in the case of force on target exercises; entity addressing,
entity filtering, and brokering control of instrumentation.

Ensuring Reuse. These frameworks succeed by providing a
uniform and highly reusable feature rich environment that allows
developers to focus on their primary objective of implementing
business level use cases and not on repetitive implementation
details. CTIA’s success can be realized by the fact that it forms an
average of 50% of the code base for all live training systems
deployed since 2006. Of the two million lines of code in the CTIA
framework, LT2 products typically use 57% of it. For the eight
currently active fielded products listed on the LT2 Portal, this is a
reuse factor of 4.5. Due to the large investment of the current
architecture and the multitude of component dependencies it is
unreasonable to expect that the new architecture can be developed
in an isolated environment and deployed to wholly replace the
existing architecture. Backwards compatibility must be
maintained with legacy software components through the existing
CTIA Framework interfaces.

Using the latest technology available during the design effort in
2001, CTIA was designed using the Common Object Request
Broker Architecture (CORBA) interface definition language
(IDL). It enabled a measurable compliance level without
specifying an implementation language. The CORBA IDLs were
aggregated into API-level Object Models providing methods and
higher-level abstractions (e.g. proxies for remote objects). The
CTIA Object Models have evolved to a point where they remain
very stable and application development is almost universally tied
to the OM implementation and not to the CORBA IDL.
Additionally the universal adoption of the CTIA framework has
negated the need for a compliance level. As a result CTIA has
been able to separate itself from the IDL constraints and evolve to
new technologies without affecting compatibility or external
development. Because the individual CTIA services were
discreetly defined by IDL interfaces applying web services at the
IDL boundaries was an initial design plan but further analysis and
understanding of the true intent of SOA revealed that the tight
coupling between services and the state full nature of the existing
services would not provide the benefits identified by the customer,
and the big band deployment and migration to new versions of
CTIA services would persist. The migration away from the IDL
interfaces in the previous generation of CITA is a direct result of
the service interfaces being too interdependent. Consumers were
unable to effectively implement portions of the system that were
necessary for their implementation and instead resorted to an over
arching object model that reduced the services to a single
monolithic architecture. This tight coupling limited innovation by
consumers and was a primary driver for the move to
modernization. New agnostic service boundaries must be
established that encapsulate the core capabilities that can be
segregated into independently fieldable capabilities dependent
only on the consumers use case.

Business process. In the Live Training domain the technical
problem does not directly map to the IT business process for
producing goods and services which SOA is typically modeled on.
The standard SOA business process is an orchestration of multiple
business functions each of which rely on the results of the
previous function to accomplish a discrete task. The archetypal
example such a business process is booking an order -> updating
inventory -> shipping -> billing. Business units in a live training
environment are providers of content and context to artifacts
generated within the system. The system collects artifacts and
then consumers generate review content from the artifacts. The
path through artifact generation, manipulation and presentation is
not dictated by a predefined orchestration but ad hock, depending
on the fidelity of the training environment. A combat training
center for example has multiple organizations dedicated to
providing context and content for discrete aspects of the training
exercise such as fires, upper echelon support, or areal support,
where as a home station training range instantiation is typically an
individual assessing the time on target, or efficiency in meeting
the training objectives for a single unit.

Deployment/cycle time. In the archetypal SOA deployment
the SOA system is ubiquitous and accessed from multiple
disparate organizations. The system is always available with no
defined end state. As live training systems are deployed currently,
installations exist as isolated standalone systems. Training
exercises have specific training objectives and data that are not
shared between concurrent exercises at different ranges. Service
composition is a function of the training audience and range, from
combat training centers with dedicated rack servers down to
individual ranges consisting of a single workstation operated
directly by an individual from the training unit. These systems are
accessed and maintained onsite and their state is dependent on the
phase of the training rotation. Though the architecture to which
we’re migrating (henceforth herein called the objective
architecture) will be a ubiquitous solution overall, the SOA
implementation of CTIA must account for the different phases of
training where different subsets of services are available
depending on the training rotation state.

Security. Any changes to the CTIA and LT2 architectures and
components must consider the security and accreditation impacts
in order to support the information assurance policies and
DIACAP process. We must also consider that the Army evolves
to implement cloud computing and virtualization that the security
and information assurance requirements are likely evolve and
introduce new requirements.

Technical Concerns. SOA adoption challenges typically center
on bandwidth, scalability, and technical issues based on
implementation details such as limitations of proprietary ESB
capabilities. Historical CTIA development has resulted in a set of
metrics that ensure that all development activities are meeting the
required Technical Performance Measures (TPMs). Continuous
integration and testing means that any time these values are
exceeded the development team takes immediate action. Existing
test rigs and training scenarios provide a baseline for validation
testing. To date, system performance exceeds the previous
generation CTIA. The first transition architectures focus on the
most reused and also the most performance-sensitive elements
within the system, ensuring that these issues are addressed early
and often.

8. OVERCOMING CHALLENGES
Despite the challenges, SOA design principals do map very well
to the Live Training Domain. The segregation of capabilities
through service boundaries that can be deployed as needed and
horizontally scaled has been a stumbling block of the current
architecture. The enormous deployment disparity between combat
training centers conducting battalion level training and small
ranges for individual and squad training requires significantly
different levels of user interaction with the system and model
fidelity but the basic core needs of the training unit still share a
common data model and have a great deal of capability overlap.

Deploy new system along old system
Though the current system has a limited ability to natively support
the technological agility that is being requested from the active
product teams, end users, and new acquisition efforts, it still meets
the vast majority of core live training requirements and is has
become a very stable and reliable architecture. The most effective
way to continue to benefit from the investment already made is to
continue to deploy the current system and supplement new
capabilities using the new system whenever possible.

There is no expectation that the new CTIA system will be able to
completely supplant the current system and all of its capabilities
in one fell swoop. The new system will be deployed with the
current system and synchronicity will be maintained though a
system interop adaptor. New capabilities that can’t be met by the
current system such as mobile access to situational awareness and
observation recording by combat trainers encourage immediate
adoption by product teams. Product teams will build upon this
new system and migration of existing capabilities will occur
though the natural evolution of component lifecycle updates and
by a dedicated team of developers migrating the most essential
core capabilities until the old system can be completely retired.
This is the same development model that built the current library
of core assets. SOA migration using composable, reusable, and
loosely coupled services enable greater interoperability both
internally and to external systems, this is being embraced by
leveraging as much of the current system as possible during the
migration. These design goals enable high degrees of reuse of
commercial and tactical systems with web enabled interfaces such
as situational awareness displays and tactical data collection
systems. Reuse of these tactical and commercial systems is
enables live training capabilities to be fielded with a consistent
user interface that soldiers and trainers are already familiar with.

Current LT2 components are thick applications built on the
common architecture. Though there has been a large amount of
re-use between components for the most part capabilities have
been improved as they have been incorporated leading to
subsequent components having different implementations to
provide overlapping core capabilities such as unit organization
trees, entity property editors and status viewers. Reducing
redundant capabilities in components by defining discrete
interfaces between re-usable services that are loosely coupled and
are not compiled as part of a single monolithic application will
encourage future development to improve the common core
instead of tailored solutions. Controlling service contracts as well
as their implementations though the product line will also ensure
that any new implementation that obsoletes an older instantiation
will be backwards compatible or at least more simple to integrate
if changes to the service contract are controlled.

Alternatives to wrapping current services

CTIA provides the service hosting software infrastructure that
hosts both CTIA services and product services. This includes a
common message bus, application hosting, application
monitoring, and web-based user interface services.

Instrumentation, targets, and cameras are real world devices that
are controlled, have communications intricacies, have status, etc.
these are now represented by discrete services contracts instead of
being handled with a single all knowing “service”. These can be
deployed to sites based on their individual needs and aren’t
interdependent which reduces the deployed footprint and
associated maintenance and operator training.

Creating services that directly map to physical capabilities is
relatively straight forward for but constructs that don’t have
physical boundaries such as geographic location information and
entity engagements between there is a need to determine the
appropriate level of granularity in the service contract.
Determination of granularity was performed by breaking down
use cases into business processes; Each process step was analyzed
to determine what capabilities were need to complete the step and
the resulting list of capabilities. When groups of capabilities
appeared together in multiple use cases and steps they were
grouped into service candidates. Analyzing the existing product
line variations and divergent implementations of existing
components also influenced the grouping of capabilities in service
candidates. Variations in implementations between overlapping
tools such as the Fire Support Tool and Fire Support Tool Light
clearly identified a domain need for variations in model fidelity
which can be encapsulated in service implementations that share
service contracts, separation between battle damage assessment
and the fire engagements also allowed different variations in
effects modeling between projects to be encapsulated and re-used
within different system components instead of duplicated as they
are in the current system. This provided clean, well-defined
interfaces to a set of reusable services that encapsulated the
variations between sites and agnostic interfaces between system
components while preventing proliferation of services that would
have become unmanageable in the product line. Due to the high
degree of maturity, the existing data-model and requirements were
reused almost in their entirety with minor improvements based on
lessons learned and normalization.

Alignment with product schedules
Product teams in LT2 target specific echelons and type of live
training. Within the Live Training domain the core capabilities are
very similar but as training progresses up to larger echelons and
more complex objectives the needs of the training platform
increase. It’s important to note that in almost all cases the
requirements of the individual capabilities do not change, but the
number of capabilities required to support the training objectives
is increased. For land navigation training, participant tracking is
essential, when training force on force you must know the
engagements as well as participant tracking. Alignment to the
defined product teams’ deployment schedules enabled the
development team to target the capabilities need for less complex
product requirements first. Doing so encourages product teams to
adopt the system early and mature the solution as other
capabilities while developing new capabilities to me the more
demanding use cases. Additionally as product teams are already
fielding with the existing system, high value services, such as web
enabled editing of organization trees were included in early
transition architectures to provide incentive to adoption above and
beyond the logistics and operator training benefits to the new
deployed footprint.

Technical Challenges. By adhering to the core tenants of SOA
design and not focusing on the technical implementations of
specific ESB providers, implementation decisions have focused
on ensuring that the system meets the intended use case and
performance requirements. Up front testing was performed to
ensure that message volume and latency were scalable to
performance requirements that were already established for the
previous generation of CTIA. Technologies such as message
queuing, databases, and ESB constraints were evaluated before
any service implementations were initiated. Performance
limitations of individual services can be mitigated by technology
selection such as REST interfaces and AMQP message queues
instead of SOAP calls. Ensuring that services are stateless allows
for vertical load balancing to meet performance requirements.
History has taught us that system performance, and user
perception of system performance, are key to adoption by users
and product teams. Making performance concerns primary drivers
to the design, and putting automated testing in place as part of the
continuous integration development environment, causes
performance issues to become immediately known and addressed
before they are allowed to propagate though the system.

9. ALIGNMENT OF SOA AND PLE
The migration to a SOA paradigm is not a migration away from
product line development (see, for example, [22]). In fact, we
found that the LT2 product line process for managing components
applied directly to the development of SOA services. Changes to
the governance process were almost entirely additive to account
for the idiosyncrasies of service development. Reuse of the
existing core components feeds directly into the mentality of
reusable services and development in the shared environment of a
product line such that the impacts to development in a shared
service oriented infrastructure with defined service contracts is not
a significant change in developer ideals.

The most important part of migrating to a SOA is to understand
your customers’ goals. It is critical to understand what is driving
the change in the system and what the final sate of the system
must provide to the end user. Evolution of current systems to SOA
is most likely not going to provide benefit without concurrently
addressing the underlining problems of the current system. For
LT2, the migration to SOA revealed that the core problems with
the architecture were not in the choice of technology but instead
with the separation of services and scalability of the interfaces
within the system. Migration without thorough analysis to address
the inherent problems would have provided a more modern
interface and reduced some of the integration issues in the current
architecture but the return on investment would have been very
low relative to the amount effort expended.

When planning the SOA migration use your current product line
as a guide. Understand your current capabilities and embrace
those that are unique to your domain. Once these are clearly
understood, determine the way the product is used within the
domain. Scaling from extremely small to large scale environments
was a large consideration for LT2 and was a primary driver in
determining service granularity. Use variation in your current
system as a guide to the areas was needs diverge; service
boundaries should embrace these divergences. Consistent service
contracts between implementations is good for embracing
variations of model fidelity and breaking interdependencies for
variations in fielded capabilities. Variations within service
implementations will also exist and should be embraced.

10. OBJECTIVE ARCHITECTURE
The objective architecture is a cloud-based solution providing
Training as a Service to the live training community. This solution
is supported by the employment of several key technologies,
including virtualization and wireless connectivity at the training
sites, and the service infrastructure to support the applications
required to record, monitor and augment live training data. The
end state for the CTIA SOA effort is to provide the
instrumentation system that supports this deployment.

CTIA SOA includes the service-oriented infrastructure as well as
the services that provide the core capability necessary for all live
training environments including entity tracking, artifact collection
and manipulation. These core services are required for all
categories of live training. The domain of live training spans from
individual shoot houses, and weapons proficiency, up to battalion
engagements that train battle staff. The objective architecture
enables all levels of training to co-exist during large training
exercises while not sacrificing the quality of training at any level.

Figure 5 shows the end state of the architecture deployed to a
regional training center supporting exercises at home stations as
well as combat training centers. These concurrent training
exercises are leveraging domain expertise from trainers and
analysts that may be physically distributed at various Army posts.

CTIA provides services consumed by individual combat trainers
to collect training observations and artifacts where the training is
taking place. Migration of this data collection and analysis is
aggregated to combine the observation artifacts of all combat
trainers. Combined, this aggregation of data provides inputs that
TAF analysis can use to conduct higher echelon analysis of the
training exercise. Combat Trainers are also able to access data
from other combat trainers and data collected automatically such
as unit position engagement data and battle effectiveness to
conduct rapid and effective reviews with their unit. CITA is
providing access to information and making the information
available in a format that product teams can compose into simple
to understand targeted applications for use by combat trainers,
TAF analysis and soldiers.

Development of the objective architecture is decomposed into
transition architectures to enable product teams to incrementally
migrate to the new architecture as capabilities are matured. This
also allows the CTIA development team to focus on the
incremental development without a final big-bang deployment
and sudden migration by product teams. The first transition
architecture focused primarily on the service-oriented
infrastructure and established baselines for components that
compose the underlying databases, communications channels and
deployment. Work on the most elemental of services such as
entity and geographic location services were also begun.
Subsequent transition architectures focus on services with high
degrees of reuse including instrumentation which is used on all
live training ranges, and fleshing out supporting services based on
training use cases. Uses cases met by each of the transition
architectures build on the least complex land navigation use case
and work toward full-scale force-on-force engagements at the
Brigade echelon. Product teams adopt the new architecture wholly
as the capability is fully met and incrementally when new
capabilities, such as mobile access to observations, are added and
not available in the legacy architecture. During incremental
adoption, the SOA system is deployed with the legacy system and
interoperability is maintained though an “interop” service. Due to
high degree of interdependence in the legacy system the “interop”

service is dependent on almost all new services, additionally the
sheer volume of capabilities reliant on the legacy system the
“interop” service will remain for an extended duration after
development of the SOA system has matured to the objective
architecture.

The true test of capabilities in the new system, however, is how
effectively the new architecture meets the customers’ stated goals.
As part of the GQM process during initial planning, the metrics
were decomposed into collectable and measurable elements that
can be instrumented into the core infrastructure of the source
code. This allows for simple calculation of usage during
deployment without manual collection. Usage metrics indicate
adoption in deployed systems and performance of the services
within the system. Instrumenting the code in advance makes
calculation inherent instead measuring only during system
integration and test; this gives a better view into actual product
line utilization in fielded systems, which in turn allows for better
tailoring of variation and deployment footprints to meet user
needs.

11. SUMMARY AND CONCLUSION
This paper has described the migration of CTIA and the LT2
Product Line to the TaaS paradigm using a specific set of modern
computing technologies that will enable rapid delivery of training
capabilities across servers, mobile devices, and heterogeneous
platforms. Specifically, service-oriented architecture (SOA) and
cloud computing were considered, which can satisfy the
requirements of the TaaS and COE and meet user demands for an
enhanced training experience.

Furthermore, this paper discussed the approach taken to elicit the
future needs of the Army's live training community, and how
cloud computing and SOA are leveraged to meet required
capabilities.

Currently many training systems acquired, fielded, and sustained
by the U.S. Army are unable to seamlessly comply with a
continuously evolving and often complex computational
environment. The current state of such training systems must
advance to a Training as a Service (TaaS) future state in order to
adapt to a volatile defense budget, conform to policy updates, and
enhance the training capabilities afforded to the Warfighter. TaaS
will transform current Army training applications into distributed
web-based services, allowing them to be accessible across any
location via thin client workstations and wireless mobile devices.

An important conclusion and, we hope, contribution of this paper
is that we are able to confirm in practice what previous authors
have asserted about the expected compatibility of SOA
approaches and product line engineering (for example, [1]
[11][15][19][22]). Whereas those earlier works have opined
about the compatibility in abstract or theoretical terms, we have
presented a real-world experience report about migrating a very
large and successful product line to the service oriented
architecture paradigm. Our experience affirms that “SOAs and
software product line approaches to software development share a
common goal. They both encourage an organization to reuse
existing assets and capabilities rather than repeatedly
redeveloping them for new systems to achieve desired benefits
such as productivity gains, decreased development costs,
improved time to market, higher reliability, and competitive

Figure 5 Architecture end state (© General Dynamics)

advantage… Both approaches promote reuse by developing
applications/products based on a set of reusable components.
Those components are developed with well-defined interfaces and
processes that specify how the components are to be used, which
enables applications/products to be produced in less time.
Adopting either approach requires implementing similar
organizational policies and practices necessary to adopt a new
technology or a new way of doing business.” [19]

Ultimately, SOA and cloud computing will allow product-line
architectural services, components, software applications, and
software updates and upgrades to be readily available in a
logically centralized repository where consumers can access them
as needed. Virtualization will improve organization between
database servers and reduce hardware footprint. Some of these
gains have already been realized and some are still in the process
of development. These technology updates will allow CTIA to
achieve greater ROI by providing an inherent upgrade to
previously fielded systems and enabling additional reuse. ROI
numbers for CTIA have been calculated based on not needing to
incur the initial development costs for the features provided on
each deployed product. There is also significant cost savings by
preventing the duplication of software sustainment for products.

12. REFERENCES
[1] Abu-Matar, M., Gomaa, H. “Variability Modeling for

Service Oriented Product Line Architectures,” Proceedings,
15th International Software Product Line Conference
(SPLC), 22-26 Aug. 2011, pp. 110 - 119

[2] Basili, V.R., et al. (2002). The Goal Question Metric
Paradigm. In: Marchiniak J. J (ed.): Encyclopedia of
Software Engineering. New York, pp. 578-583.

[3] BigLever Software, “BigLever Software Gears,”
http://www.biglever.com/solution/product.html

[4] Chastek, G.; Donohoe, P.; McGregor, J. Formulation of a
Production Strategy for a Software Product Line. Technical
note CMU/SEI-2009-TN-025, Software Engineering
Institute: 2009.

[5] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J., and Winkler, A., “Second
Generation Product Line Engineering Takes Hold in the
DoD,” Crosstalk, The Journal of Defense Software
Engineering, USAF Software Technology Support Center,
2013, in publication.

[6] Clements, P.; Northrop, L. Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002.

[7] Department of the Army, 2010 Army Posture Statement,
“Global Network Enterprise Construct,”
https://secureweb2.hqda.pentagon.mil/vdas_armyposturestate
ment/2010/information_papers/Global_Network_Enterprise_
Construct_(GNEC).asp, 2010.

[8] Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing
U.S. Army Return on Investment Utilizing Software Product-
Line Approach,” Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC), 2012.

[9] Dumanoir, P., Rivera, J. (2005). Live Training
Transformation (LT2)-A Strategy for Future Army and Joint
Live Training. 2005 Interservice/ Industry Training,
Simulation, and Education Conference (I/ITSEC), Orlando.

[10] Flores, R., Krueger, C., Clements, P. “Mega-Scale Product
Line Engineering at General Motors,” Proceedings of the
2012 Software Product Line Conference (SPLC), Salvador
Brazil, August 2012.

[11] Helferich, A., Herzwurm, G., Jesse, S., and Mikusz, M.
Software Product Lines, Service Oriented Architecture and
Framework: Worlds Apart or Ideal Partners? Trends in
Enterprise Application Architecture, Lecture Notes in
Computer Science, Vol. 4473, 2007, pp 187-201.

[12] Jensen, Paul. (2009). “Experiences with Software Product
Line Development.” Crosstalk The Journal of Defense
Software Engineering, USAF Software Technology Support
Center, 22, 1 (January 2009): 11–14.

[13] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study, CMU/SEI-90-TR-021, ADA235785. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University,
1990.

[14] Krueger, C. and Clements, P. “Systems and Software
Product Line Engineering,” Encyclopedia of Software
Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013, in publication.

[15] Krut, R., “Service Oriented Architectures and Product Lines
— What is the Connection?” Workshop on Service Oriented
Architectures and Product Lines, 11th International Software
Product Line Conference (SPLC), 10 September 2007.
http://www.sei.cmu.edu/library/assets/Krut_presentation.pdf

[16] Lanman, J.T., Horvath, S.D., and Linos, P.K. (2011). Next
Generation of Distributed Training utilizing SOA, Cloud
Computing, and Virtualization. 2011 Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC),
Orlando, FL.

[17] Lanman, J.T.., Kemper, B.E., et al. (2011). Employing the
Second Generation Software Product-line for Live Training
Transformation. 2011 Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC), Orlando.

[18] Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco.
Software Product Lines in Action, Springer, 2007.

[19] Northrop, L., Clements, P., Bachmann, F., Bergey, J.,
Chastek, G., Cohen, S., Donohoe, P., Jones, L., Krut, R.,
Little, R., McGregor, J., and O’Brien, L. A Framework for
Software Product Line Practice, Version 5.0, “Frequently
Asked Questions.” Software Engineering Institute, Carnegie
Mellon University.
http://www.sei.cmu.edu/productlines/frame_report/FAQ.htm

[20] Parnas, D.L. On the design and development of program
families. IEEE Trans. Software Engineering 1976, SE-2 (1),
1–9.

[21] Software Engineering Institute, “Catalog of Software Product
Lines,” http://www.sei.cmu.edu/productlines/casestudies/
catalog/index.cfm

[22] Software Engineering Institute, “Workshop on Service-
Oriented Architectures and Software Product Lines
(SOAPL)—Enhancing Variation,”
http://www.sei.cmu.edu/splc2009/soapl.html

[23] SPLC Product Line Hall of Fame, http://splc.net/fame.html

