
How Automotive Engineering Is Taking
Product Line Engineering to the Extreme

Len Wozniak

General Motors Company
3300 General Motors Road

Milford, MI 48380
+1 248 255 2332

len.wozniak@gm.com

Paul Clements
BigLever Software

10500 Laurel Hill Cove
Austin, Texas 78730 USA

+1 512 426 2227
pclements@biglever.com

ABSTRACT
Automotive manufacturing ranks among the most extreme
instances of systems and software product line engineering (PLE).
The product family numbers in the millions, each product is
highly complex in its own right, and the variation across products
is literally astronomical in scale. This paper explores the aspects
that make the domain extreme and the very specific implications
they have for PLE. These implications include the need for
efficient manufacturing, complexity management, concurrent
development streams, globally distributed engineering and
production, a hierarchical product family tree, multi-level
variation binding, constraint management, and a highly robust and
integrated PLE tooling environment. Happily, the PLE paradigm
supporting these implications brings about a number of
opportunities for analysis and automation that provide efficiencies
of production previously unattainable. We focus on one example
in depth: The management and automated generation of the many
thousands of calibration parameters that determine vehicle-
specific software behavior. Throughout, we use the vehicle
product line at General Motors, which we believe to be the
world’s largest, to illustrate and ground our journey through
automotive PLE.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line engineering,
software product lines, feature modeling

General Terms
Management, Design, Economics.

Keywords
Product line engineering, software product lines, feature
modeling, feature profiles, bill-of-features, \variation points,
product portfolio, product configurator, second generation product
line engineering, automotive product lines

1. Introduction
Automotive manufacturing likely represents the most challenging
environment for systems and software product line engineering
(PLE) in the world today. The product family numbers in the
millions, each product is highly complex in its own right, and the
variation across products is astronomical in scale.

These aspects of so-called mega-scale PLE have broad
ramifications for the PLE approach and processes, both technical
and organizational, that are required to successfully manage this
level of complexity. To borrow the tag line from a well-known
General Motors marketing campaign, this is not your father’s
PLE.
Automotive PLE is, we believe, worth studying for a number of
reasons:

• First, edge-of-the-envelope cases usually require better-
formulated approaches. Large organizations rolling out end-
to-end engineering solutions for complex problems need
proven methods that are understandable, well-formulated,
teachable, repeatable, and economical – all traits that any
organization looking to adopt a PLE approach would find
appealing.

• Second, even though product line case studies abound (for
example, [4][5][7][10][12][14]), automotive case studies are
relatively few and far between. Hence, the knowledge and
experience described in this paper may be put to direct use
by other organizations working in the automotive realm.

• And third, being able to cite advanced PLE concepts being
intensely applied in one of the largest industries in the world
can serve to instill confidence in the PLE approach for other
industries as well: If PLE works in automotive, it should
work anywhere.

This paper discusses the complexities endemic to the automotive
domain, and goes on to explore how these complexities inform
and constrain the PLE approach needed to solve them. The good
news is that this derived approach is rife with opportunities to
improve the engineering process for the automotive domain in
ways not previously attainable, and we will explore some of them.
Our paper is organized as follows.

• Section 2 defines three salient aspects of automotive mega-
scale product line engineering that set it apart from every
other PLE application domain.

• Section 3 explains how these aspects constrain and inform
the product line engineering approach required to handle a
mega-scale product line.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, US
A Copyright is held by the owner/author(s).
Publication rights licensed to ACM. ACM 978-1-4503-3613-
0/15/07…$15.00
DOI: http://dx.doi.org/10.1145/2791060.2791071

• Section 4 discusses the implications for tooling of the
approach outlined in Section 3.

• Section 5 explores new opportunities for engineering
efficiency improvement that come about because of the PLE
paradigm described by Sections 3 and 4.

• Section 6 delves into one such opportunity in depth:
Automated management and generation of the thousands of
calibration parameters necessary to determine vehicle-
specific software behavior.

• Section 7 summarizes.

2. Three dimensions of mega-scale PLE
General Motors’ product line of vehicles has been referred to as
“mega-scale product line engineering” [6]. Fundamentally, what
we mean by that can be understood in terms of three dimensions:

• An extremely large product set. General Motors builds
about 10 million cars and trucks a year, which translates to
roughly one vehicle coming out of a factory somewhere
around the world every four seconds. We are unaware of any
other domain with a product line this large.

• Extremely complex products. Modern automobiles can
comprise several hundred separate engineering systems:
engines, transmissions and brakes, of course, but also
windshield wipers, interior lighting, entry controls, air bags
and seatbelts, climate control, and infotainment, just to name
a very few. Some of the systems are extraordinarily complex
on their own – high beam headlights that “see” oncoming
traffic at night and mask parts of their beam to avoid blinding
the other driver, windshield wipers that know when it’s
raining and turn themselves on, or infotainment systems that
provide 4G LTE wireless connectivity (Figure 1).

But recent years have seen complex interaction among
different vehicle systems become the norm: A parking assist
feature that must work with object detection sensors,
steering, propulsion, and the transmission, for example, and
account for the fact that different vehicles are equipped with
different sensors, steering, propulsion, and transmissions.

Figure 1 A Buick infotainment system showing current

information from The Weather Channel
(photo © General Motors)

We are unaware of any other domain that can compare in
product complexity. As one measure, the software to support
all of the features and functionality chosen for a vehicle can
run up to 10MSLOC – more code than is flying on either the

Joint Strike Fighter or the Boeing 787 Dreamliner [11]. To
run the software, a car may have dozens of electronic control
modules, distributed around the vehicle on multiple
networks, which leads to complexity in terms of optimal
deployment, or assignment of functionality (and the software
that provides it) to individual processors.

• Extremely complex feature variation. GM serves a mass-
market consumer base that runs from entry-level vehicles in
developing countries to high-end luxury vehicles with feature
capability to match. They build over 60 models under seven
brands and divisions. It takes many hundreds of features in
thousands of flavors to fully describe every member of the
product line. For GM, the unique number of manufactured
product configurations (in terms of the software and
electronics on board) runs to the few tens of thousands.

The features exist in a complex tapestry of feature interaction
constraints. To choose but one example, there are complex
interactions among the vehicle’s exterior lights (low beam
headlights, high beam headlights, tail lamps, brake lights,
parking lights, daytime running lights, front fog lamps, rear
fog lamps, cornering lamps, reversing lamps, and hazard
flashers) in terms of which lights are allowed, disallowed, or
required to come on with which others, under the regulatory
requirements of any of the 150+ countries in which GM does
business. The “lead me to my car” feature makes lights come
on or flash when the driver presses a button on the key fob.
Which lights come on, whether they flash or not, and how
long they stay on all are specific to the region of sale and (of
course) what exterior lights are actually on the vehicle. The
electronics aboard every car has to get that behavior right for
that car.

Figure 2 A small part of GM’s product line: The Chevrolet
Corvette Stingray, Buick Regal, GMC Sierra Denali, and

Cadillac Escalade (photo © General Motors)
To our knowledge, the complexity of the domain, richness of
variation, and number of products is unprecedented in product line
engineering. GM’s product line is, we believe, the largest and
most challenging one in the world.

But other companies in the automotive industry are working under
exactly the same kind of complexity considerations. In the
following section we will explore the implications for product line
engineering solutions.

3. Implications for PLE
By themselves, the three aspects of mega-scale PLE outlined
above are unlikely to be surprising to any reader. However, they
lead to some unique considerations that this industry holds for
PLE, especially PLE in the systems engineering realm, that may
not be widely understood.

Manufacturing is king. Although the engineering cost to develop
the software and electronics to support features is sizable, it is far
outweighed by the cost of manufacturing. Consider:

• On the engineering side, it could take up to 5,000 engineers
to carry out the full engineering activities for all electrical
content in the product line. Distributed over different model

years that are in simultaneous development, this works out to
about $600 million of engineering effort for all the electrical
systems content for one year’s worth of product.

• On the manufacturing side, at a 10-million-vehicle-per-year
volume an individual complex electrical subsystem can cost
as much as a billion dollars per year in material cost. A
single assembly plant can cost as much as a billion dollars
and have more than 1000 employees.

So, while reducing engineering costs is absolutely a goal, that
engineering is done in the context of much higher manufacturing
costs. In a product line of 10 million products, saving just 10 cents
per product in manufacturing cost returns a million dollars to the
company coffers.

Figure 3 Chevrolet Cruze on the production line at Lordstown

Assembly in Lordstown, Ohio (photo © General Motors)

Among other things, concern for manufacturing efficiency brings
about a need for the following:

• Complexity management leads the way. If manufacturing
is king, then complexity management is the crown prince. A
car is built from thousands of parts, and each part may come
in different forms or “flavors” depending on features chosen.
For example, a car with “parking” windshield wipers (those
that withdraw down under the hood to hide when turned off)
will get a different part package than a car without.
Maintaining a large parts inventory (and the supplier
relationships that come with it) is enormously costly. Equally
important, the physical space at each manufacturing station is
limited; choosing the right part for the next vehicle rolling
down the line from a small number of bins is essential.
Whereas marketing may wish to offer many features and
feature variants in unlimited combinations, attention to
manufacturing cost limits the choices.

As an example, each different configuration of sensors,
actuators, and processors requires its own wiring harness to
connect everything together. A wiring harness is a part, and
an extremely complex one at that. It is often more
economical to add a sensor or a processor to a vehicle, even
when they are not used, than to develop, maintain,
warehouse, and install the different wiring harnesses needed
to support different configurations.

This argument extends to various hardware subsystems as
well – it may be cheaper to install a slightly more expensive,

higher-capability subsystem even on vehicles that do not
make use of the added capability.

• Every second counts. Saving a mere second on each of ten
million vehicles adds up to 116 days of manufacturing
capacity (distributed across all of the factories, of course).
Due to the manufacturing constraint of assembly line rate,
only about 90 seconds are available to load all of the
programming for all of the electronics on each vehicle.

• “One size fits all” software with behavior controlled by
calibration parameters. It is not physically possible to put a
full software load onto the vehicle in 90 seconds, and so it is
simply not possible for each vehicle to have its own
customized software to match its chosen feature
configuration. That means that the software must be pre-
loaded onto the various electronic control units, and that
means that the same software must be capable of handling
any feature configuration on the vehicle. To continue the
windshield wiper example, the software to operate the wipers
comes in a single component that includes code to “park”
and “unpark” the wipers at the appropriate times. That
parking/unparking code is always present but turned on for
vehicles that have parking wipers, and turned off for those
that don’t. The software’s behavior is determined by a set of
calibration parameters, whose values are loaded into a
physical memory block during manufacturing, since that load
can be accomplished within the allotted time. Feature-
specific code is written to be predicated on the value of the
appropriate calibration parameter.

As we will see in Section 6, it takes many thousands of
calibration parameters to configure the software for a
vehicle. Vehicle-specific “cal” configuration sets constitute
separately maintained parts.

The use of calibration parameters has other advantages. First,
it makes it easy to confirm that the software was correctly
loaded by checking the software memory space. Moreover,
calibration parameters represent a completely standard
variation mechanism [1] for all of the software, and they
drive requirements specification, coding, and (particularly)
testing in a consistent way: Testers test against a specific
calibration configuration.

• Perfect synchronization among engineering assets is
essential. If every second counts during manufacturing, then
shutting down an assembly line for minutes or hours is a
major disruption that garners corporate-level scrutiny. That is
what can happen when the wrong parts are queued up for the
next vehicle coming down the line, or no parts, or duplicative
and conflicting parts. Every decision made about every
vehicle must result in a correct Bill of Materials with no
possibility of error. Even a relatively infinitesimal error rate
can lead to unacceptable cost.

Even before manufacturing, the need for perfect
synchronization extends to engineering development. For
example, every configuration needs to be tested before it is
cleared for manufacture, and the chosen tests need to line up
perfectly with the configuration being tested to avoid missing
a test that should have been run or running a test that is
doomed to failure because it (incorrectly) tries to test a
feature that the configuration doesn’t even have.

All of these exigencies – complexity management, calibration
parameters for one-size-fits-all software, and perfect
synchronization – flow from the need to achieve the most efficient

manufacturing possible, which in turn flows from the
extraordinarily high number of richly varying product instances.

Concurrent development streams. Because of the complexity of
the products, designing a car for a model year must begin years in
advance. In addition, products come out on an unforgiving yearly
schedule. Therefore, each vehicle family has to be planned and
developed taken though a years-long series of gates from concept
and feasibility studies, to commitment to manufacture, to final
design and parts selection, to the factory floor. GM may have up
to 15 development streams in process simultaneously. To say that
configuration management “takes on a special significance in the
product line context” [13] is, in this setting, rather an
understatement. Every piece of work must be correct for the
product line’s current “cadence” (development stage) and
coordinate and synchronize correctly with earlier and later
cadences. Because all of the product line’s shared assets also have
to be in sync with each other in each cadence, branching and
merging are large-scale development events.

Distributed engineering means modularized feature models.
For PLE to work at large organizations, it would be impractical to
have a single organizational unit tasked with the care and feeding
of the shared PLE assets. Certainly having one global collection
of feature declarations for an entire production line is out of the
question. System engineers have no interest or need to see all of
the feature diversity in other systems. For example, engineers for
an automotive transmission system do not need to see feature
abstractions that capture the diversity in the entertainment or GPS
navigation system. It makes no sense to comingle them. It makes
much more sense to modularize the feature model in a way that
corresponds to the organizational structure of the enterprise, in
which domain knowledge is collated into groups that correspond
to the vehicle’s systems.

Globally distributed engineering. To serve a worldwide market
and save on shipping and distribution, factories are located around
the globe to be close to customer segments. Engineering centers
are also located around the world, with each given a specific area
of responsibility. Thus, there is a critical need to keep the 5,000 or
so product line engineers in sync in a number of ways.

First, training is required to keep the engineers on the same page
concerning the product line engineering approach, the systems
and software development tools chosen, the CM approach being
utilized, and more. GM has a broad training curriculum. For
example, as a prelude to working in the PLE enabled requirements
tool chain, engineers are asked to take the following courses that
range in duration from a few hours to a whole day:

• Requirements Management Engineering and Product Line
Engineering Overview

• Introduction To DOORS (the requirements engineering tool
from IBM Rational)

• Requirements Engineering with DOORS

• Product Line Engineering with Gears (the PLE feature
modeling tool and configurator from BigLever Software)

• Managing Requirements Variation with Gears

• Configuration Management in DOORS

• Change Management with Rational Team Concert.

In addition to training, GM holds mentoring workshops
throughout the various system groups where experts explain the
best practices in (for example) feature modeling for a product line.
Technical leaders from each system area attend these workshops,

and then mentor and teach their own teams. To date, there have
been over 60 full-day feature modeling workshops held across the
company; more are scheduled.

Second, everyone’s work, no matter where it is carried out, needs
to be compatible with the rest of the product line. General Motors,
like many global companies, faces the challenge of coordinating
the activities of engineers located in different time zones and
different continents.
Multi-level variation: General Motors, through its product line
approach, is in the process of standing a long-held automotive
paradigm on its head: Rather than derive the features you can
support on a vehicle by first choosing the type and capability of its
parts, GM is choosing to derive the parts needed from a choice of
features. Features play a first-class role; all else follows. Feature
models are producing a GM-wide feature catalog that the designer
of a vehicle family can use to create a “Bill-of-Features,” which
can then be used to derive all of the engineering assets for that
family, including the Bill of Materials.

To handle the variation complexity and account for the different
kinds of engineering decisions that need to be made by people
with different expertise, this process of vehicle definition can be
usefully divided into a number of phases. Each phase involves a
set of decisions; subsequent phases make more detailed decisions
based on those from the previous phase(s). GM’s layered
variation scheme is described here.

First, vehicle designers choose the Features1 they want a vehicle
family to have. For example, the front seat climate control Feature
for a vehicle can come in many flavors, as shown in the example
feature model of Figure 42.

Engineering teams determine the specific set of feature
combinations (called feature profiles) that they want to offer to
the vehicle – these combinations correspond to the system
configurations that have been developed and tested.

Figure 5 and Figure 6 show two such offerings (feature profiles)
for a front seat climate control Feature. The first is a high-end
offering, with automatic (meaning that the system maintains a set
temperature) dual-zone (meaning there are separate controls for
the passenger as well as the driver) dual-mode (meaning the
passenger can control temperature and mode) for both heating and
cooling. The other is a low-end profile, essentially offering
ventilation only, that might be chosen for an entry-level vehicle in
an emerging market.

After Feature decisions are made, vehicle designers then choose
the packages of technology they want to put on the vehicle to
support those Features. A technology package typically consists
of sensors and/or actuators to effect some observable behavior in
support of one or more Features. These technology packages are
called subsystems, and they have variation as well.

The front seat climate control Feature can be provided by many
different subsystem flavors, which vary by fans, sensors,

1 A Feature (with upper-case “F”) refers to a distinguishing characteristic

of a vehicle that is nominally visible to a customer and may well be used
to market the vehicle. This is in contrast to a feature (lower-case “f”)
which is a purely PLE construct, as in “feature modeling.” There are
feature models to describe Features and, as we shall see, feature models
to describe aspects of a vehicle that are not Features.

2 In this feature modeling language, features have types. An enumerated
type obligates us to choose exactly one of its children; a set type allows
us to choose zero, any, or all of its children. An atom type signifies a
node that cannot be further elaborated.

compressors, electronic versus mechanical activation, and much
more. For example, a solar sensor can be installed if the vehicle
has automatic climate control that keeps the cabin cooler if the
sun is shining on the vehicle. Some subsystem flavors, then, will
include the solar sensor and others will not.

Figure 4 A feature model for the front seat

climate control Feature

Figure 5 A feature profile for a high-end front seat climate

control system, offering dual zone dual mode heating
and cooling

Figure 6 A feature profile for a low-end front seat climate

control system, offering essentially just fresh air circulation

Sometimes, a Feature-level choice may fully determine the
subsystems (and flavors thereof) that must be installed on a
vehicle. Where that is not the case, subsystem engineers for the
vehicle make those selections from among the compatible
choices, based on criteria such as cost, weight, heat production,

the subsystem’s contribution to the vehicle’s look and feel, and so
forth.

This partitioning between Features and subsystems is the
manifestation of an important separation of design concerns
between the end-user-visible Features and the technological
implementations of Features.

After the subsystem selection phase comes deployment, which
accounts for variation in terms of what electronic control modules
are on the vehicle, and where among them functionality is
deployed. Complexity management notwithstanding, it is
obviously more economical to build a vehicle with fewer chips if
possible. So if, for example, a configuration does not include the
memory seats Feature, then (all other things being equal) the
memory seat electronics module may be safely omitted from the
architecture, and any other functionality that might have been
deployed to that module will have to be deployed elsewhere.

Deployment as a separate selection phase continues the separation
of concerns mentioned just above. Just as some subsystem choices
are fully constrained by Feature choices, some deployment
choices are fully constrained by subsystem choices and the
choices of the vehicle’s electrical architecture. Where they are
not, deployment engineers make the choice based on distributed-
system criteria such as communication needs, network
availability, and performance constraints.

It is envisioned that eventually there will be a phase for hardware
parts selection as well, resulting in the full Bill of Materials. This
vision is not yet realized, but is on the horizon as simply a
consistent extension of the multi-level variation management
scheme being described in this section.

This separation of concerns reflected in the division among
Feature, subsystem, deployment, and parts choices is directly
represented in the modeling architecture and aligns very well with
the systems engineering process. Modeling is organized by
functional area (e.g., exterior lights or climate control) and phase,
with separate models for each referencing only those other models
with which they share constraints. This allows the early and
abstract system feature phase to be modeled early in the systems
engineering process and the more detailed phases to be modeled
as the detailed design phases are performed. This modeling
architecture also enables lightly coupled maintenance of the
feature models: When new features are added or existing models
modified, individual models can often be updated in isolation or
only with a very small external impact; all models will continue to
integrate effectively into a full Bill of Features.
The use of a Bill of Features has little impact on the time it takes
to create an initial new Product definition. There is a balance
between each individual decision being somewhat easier to make,
in a managed system with guidance on how to make choices and
facilitation of the process, and the extra decisions to be made due
to the completeness of the definition. Where significant time and
effort is saved is in the quality and value of the results. The
completeness and clarity of choices eliminates repeated emails,
phone calls and discussion about the information that was
previously unrecorded and the guidance and constraint checking
eliminates repeated correction loops to achieve a correct and valid
definition.
A product line of product lines (of product lines…). Many
automotive companies offer vehicles across multiple brands and
support regional differences. These constitute sub-families in the
product line. At General Motors, there are a relatively small
number of platforms available, each of which can serve as the

design and manufacturing foundation. For example, a platform
might define a common chassis and major mechanical
components for a family of vehicles. And vehicle families have
sub-families. For example, the same GM platform underlies its
GMC Yukon, Chevrolet Tahoe, and Cadillac Escalade family of
sport utility vehicles, as well as long wheel base utility vehicles
and pick-up trucks. Each platform, then, defines a product line
within the overall GM product line.

Each of these product lines is further differentiated to be sold in
different regions of the world (and thus accommodate the
regulatory and marketing differences in those regions). For
example, there may be an Escalade family for China and another
for North America – each its own product line within the platform
product line. Within each one of those families are more sub-
families offering low-end to high-end trim levels – still more
product lines.

This product-line-of-product-lines approach defines a product
family tree. At GM, platforms populate the top layer, with brand,
regional, and trim level variations cascading down.
So, where we spoke of “vehicle designers” in the previous section,
we should more accurately have spoken of “vehicle family
designers.”
Defining a vehicle, then, becomes a matter of making choices at
each level. All high-trim-level Buick Veranos destined for the US,
for example, have a number of things in common with each other
– they use the same platform, they conform to US regulations, and
have many Feature and subsystem choices in common to give the
Verano a distinctive look and feel.

Choices might be positive (e.g., all Veranos have this air
conditioning system) or might be “down-selection” choices (a
Verano might have any of three high-end infotainment systems
but they will never have any of the four low-end ones.)

But there is still variation among this well-specified sub-family:
options remain that can be chosen by dealers or end customers.
The end customer orders a vehicle in their desired configuration;
an assembly plant needs to be able to build any orderable
configuration. The options that remain will, in most cases, still
allow for too many variants to be defined than can be
manufactured, and so (again invoking complexity management)
the remaining variation is bundled into option packages to reduce
the number of orderable configurations.

Constraint management: Complexity management, mentioned
previously, deals with restricting the set of legal configurations to
a manageable set that can be manufactured profitably. However,
even before complexity management has a chance to whittle down
the set, a comprehensive set of constraints has to eliminate the
countless illegal configurations. Large-scale automotive
manufacturing has been going on for about a century, with
electronics and software for decades, but new features are driving
inter-system complexity at a never-before-seen scale. Not long
ago brakes and steering (for example) had little, if anything, to do
with each other. Now, however, there are Features such as driver
aids that keep you in your lane and prevent you from running into
obstacles that integrate both, along with sensors to detect the
outside world and displays to let the driver know what is going
on. These separate systems are subject to complex interaction
constraints that must be captured as constraints.

Constraints, which are expressed in terms of feature combinations,
capture regulatory as well as technological realities. For example,
daytime running lights are illegal in Japan, and so on any car
whose region of sale (the options for which are captured in a

feature model) includes Japan, the daytime running lights Feature
must be omitted. By contrast, daytime running lights are legally
required in northern Europe – another constraint. Similarly, it is
not technologically feasible to put a sunroof in a soft-top
convertible, and so a mutual exclusion constraint between these
two Features is captured.
If a Feature is included in a configuration then the subsystem(s)
necessary to support it must also be included. For example, an
obstacle avoidance Feature requires a flavor of the brake system
to be on the vehicle that can respond to software commands, and a
subsystem (and flavor thereof) that provides the necessary
obstacle-detecting sensors. Conversely, a subsystem should be
omitted if none of the Features it supports have been selected for a
vehicle.

These Feature/subsystem pairing requirements can also be
captured as constraints. Figure 7 shows an example of this from
the front seat climate control domain.

Experience at GM shows that about 30-35% of the time it takes to
build a feature model is devoted to capturing constraints among
features. This activity captures “tribal knowledge” that is often
only in the heads of experienced engineers, who (like all people)
are subject to retirement or better job offers elsewhere. Before
putting these constraints in a formal feature model, engineers for a
particular system spent a considerable amount of time answering
questions, often asked over and over again, about which features
their system was (and was not) compatible with. Now the models
can be consulted instead.

Figure 7 A logic editor showing assertions for subsystem

flavors that need to be present to support Feature choices for
front seat climate control. This editor uses prefix notation to
express logical predicates. Guidelines (comments that explain

the constraints) are in purple.

Summary. The three overriding aspects of the automotive domain
described in Section 2 (large numbers of products, complex
products, and complex variation) have a number of strong
implications for automotive PLE. These include:

• The overriding need to drive down manufacturing cost

• One-size-fits-all software

• Calibration parameters as the software variation mechanism

• Complexity management (reducing the number of
configurations possible)

• Perfect synchronization of all stages of the lifecycle, from
feature choices through manufacturing

• Attention to expressing and enforcing complex constraints
among features

• Concurrent development streams

• Global development

• Multi-level phased variation choices (in GM’s case, variation
chosen for Features, subsystems, deployment, and more)

• Product lines of product lines
We posit that most, if not all, of these aspects will be found in any
comparably large automotive product line. GM is taking the
additional step of opting to derive parts from feature choices
instead of the other way around.

4. Implications for PLE automated support
Section 3 listed a number of conclusions about PLE for the
automotive domain, using General Motors’ product line as the
driving case, based on the three observations from Section 2 about
mega-scale product lines. This section focuses specifically on the
implications for PLE automated support.

As we noted in the previous section, product line engineering for
automotive electronics has been going on for decades. But what’s
new is the almost unfettered interaction among the many systems
that populate a modern vehicle. Keeping track of the variation in
each system and the feature interactions among systems now leads
to too many possible combinations to mange by hand or with ad
hoc methods. The labor is too demanding and the chance of
making mistakes too great.

Given that automation is part of the automotive PLE approach,
what must it do? The list includes the following:

• Feature modeling. There must be a concise, consistent way
to model features across the enterprise, and so the tooling
must provide a useful, easy-to-learn feature modeling
language with enough richness to capture the kinds of
variation seen in the automotive domain.

Put another way, the tooling must provide a single source of
truth for features. The pressing need for perfect
synchronization among all phases of engineering means that
there must be a single source of truth for features, because
they cross-cut every aspect of the engineering lifecycle:
requirements, designs, code, calibrations, tests, network
analysis, and more.

Moreover, since many separate groups are involved, often
globally distributed, the feature language must include
constructs for integrating separately developed feature
models together. Having hundreds of separate engineering
teams collaborate to build a single, gigantic, monolithic
feature model is untenable.
Flores et al. [6] describes the feature language in use at
General Motors, including the constructs the language
provides for integrating separately-developed feature models
and representing product lines of product lines.

• Constraint support. Not only must the tool’s feature
modeling language be rich enough to express the many kinds
of constraints found in the automotive realm (as for the
example shown in Figure 7), it must help enforce them as
well. Vehicle family designers may make well over a
thousand decisions in the course of bringing a line to market,
and every one of those decisions must be in accordance with
every one of the applicable constraints. The tooling must
provide a way to guide the vehicle family designers in their
task by, for example, presenting the set of constraint-
compliant choices that are currently available, given previous
choices already made.
Without such automated support, engineering teams for the
various systems can continue to expect phone calls, texts,

and e-mails asking whether a particular system variant can be
put on a particular vehicle. With that automated support, the
vehicle family designers can immediately see the choices that
are available and the ones that are not. For the latter, they see
what constraints those choices would violate.

Figure 8 shows a tool that helps vehicle family designers
make their Feature and subsystem selections. The designer
has just chosen the “AutoDualTempHeatCool” flavor of the
front seat climate control Feature. The tool presents an
engineer-authored guideline explaining what the option
entails; the upper right window confirms that no constraints
(called “assertions” here) are violated by this choice.

• Consistent variation management in artifacts across the
full engineering lifecycle. For each vehicle family,
requirements, system architectures and designs, code, test
cases, documentation, calibration parameter sets, deployment
decisions, parts lists, and more all need to line up. In the
language of the SEI’s Framework for Product Line Practice
[13], “Product builders use the [shared] assets… to produce
products that meet their respective requirements.” A product
means all of the engineering lifecycle artifacts just
mentioned, instantiated to reflect the vehicle family being
produced.

Figure 8 A selection "wizard" that helps vehicle family

designers make Feature and subsystem choices in compliance
with feature constraints

A complete systems and software PLE lifecycle solution
requires that all of these artifacts are endowed with variation
points [1], which can be exercised to correspond to feature
choices to produce demonstrably consistent instances
specific to each vehicle or vehicle family, as desired.

Common representation of variation points is key to
achieving traceability from requirements to deployment.
Traceability is of great concern for GM. Every requirement
needs to be traceable to one or more design elements that
satisfy it, and each design element should be traceable back
to one or more requirements that it satisfies. Each design
element needs to be traceable forward to its implementation
and vice versa. Each requirement needs to be traceable to one
or more test cases that validate whether or not the
requirement is satisfied in the final product. Managing all of
these artifacts consistently, by tying their variations to the
single source of feature truth, is the key to achieving this.

Figure 9 Feature profiles drive the exercising of shared assets’

variation points by the configurator to produce product-
specific instances.

Figure 9 illustrates the concept. A configurator (in GM’s
case, Gears [2]) exercises variation points in the shared
assets. The shared assets contain variation points. A variation
point is simply a place in a shared asset that needs to differ
based on what feature it is supporting. Variation points are
thus expressed in terms of features. Feature profiles (which
reflect feature selections) are used by the configurator to
exercise the variation points, to produce a feature-consistent
set of product-specific asset instances.
Thus, the automation should provide a consistent language
and mechanisms for expressing variation points across all
lifecycle artifacts.

• Lifecycle-wide integration. A large automotive company
will have made tooling choices for each of these artifacts. In
GM’s case, requirements are stored in IBM Rational’s
DOORS tool, design models in Rhapsody, and so forth. To
produce the instantiations, the PLE tooling has to work with
each of these tools and preserve the traceability that exists
among the artifacts stored in them.

• Multistage configuration. To support the product line of
product lines approach, the tooling has to enable making
some vehicle-level decisions while intentionally deferring
others until lower in the hierarchy. For instance, for a
platform we may be able to bind many platform-level
choices: the number of doors and seats, for example. But
many other choices will be left wide open for now. For a
vehicle family, we may be able to make more choices or rule
out other choices. For example, some propulsion systems
may be allowed while others will be disallowed. For a
particular vehicle family destined for a particular region with
a particular trim level, we may be able to make most of the
choices, but still leave other choices unbound and presented
as options to the end consumers. In a product family tree,
each node inherits the choices made by its ancestor nodes.
Thus, as we descend down a path through the tree, we
encounter a monotonically increasing amount of feature
selection. This concept that combines staged decision-
making, feature down-selection (ruling out choices) as well
as making positive choices, and inheriting the decisions of a
node’s ancestors, is called multistage configuration [8].

• Keeping options optional: Auto-proliferation. Automotive
customers order their vehicles in their desired configurations,

choosing from available options and option packages. An
assembly plant needs to build any orderable configuration.
Complexity management dictates that not all possible
combinations are orderable. Therefore, special
manufacturing feature declarations exist to align the
developed and released engineering content with the valid
orderable configurations. These manufacturing features are
never fixed in the product definition. They are by definition
optional. No vehicle family designer ever fully binds the
variation present in the lowest-levels of the product family
tree. Their job is done when they have taken the variation
down to the point when they are willing to provide any of the
remaining combinations to their customers. These remaining
combinations show up as customer-selectable option
packages.
And yet, factories need to manufacture specific vehicles in
specific configurations in which all variation is bound. And
so it is left to the tooling to bridge the gap between the
variation intentionally left in by the engineers and a fully-
defined vehicle that is manufactured.

To address this, GM’s PLE tools have a new auto-
proliferation capability to automatically generate the fully
proliferated set of feature combination for each valid
orderable combination. This allows the product definers to
operate in the language of options while still providing the
precise complete definitions needed for engineering, release,
and manufacturing.

• Industrial strength. Automation to support PLE at this scale
needs to have a solid industrial pedigree. It also needs to be
backed by an organization that has a responsive support
group to quickly address any issues, an education and
training department to helps the thousands of PLE engineers
learn the technology and best practices in using it, and an
evolution roadmap that will address the automaker’s future
PLE needs.

5. New opportunities for engineering
efficiencies
Sections 2 through 4 have laid out the landscape of automotive
PLE and shown how the exigencies of this particular domain lead
to a demanding set of needs for the PLE approach and its
supporting automation. In particular, the paradigm of Figure 9
emerged to provide the necessary lifecycle-wide integration of
diverse kinds of shared assets, all with consistently-expressed and
consistently-exercised feature-based variation points, to meet the
need for perfect synchronization through engineering and into
manufacturing. The PLE tooling (in GM’s case, Gears [2]), in
addition to handling the configurator duties, also provides the
feature modeling language. It allows separately developed feature
models to be expressed and integrated. It also supports expressing
a full range of feature-based constraints, provides multi-level
variation support for designing vehicle families while enforcing
those constraints. Finally, it provides multistage configuration, as
well as auto-proliferation.

One very salient property of the paradigm of Figure 9 is that it is
intentionally agnostic with respect to shared asset type. It uses the
same basic variation language for all kinds of shared assets,
manages traceability links among assets in a correct and
consistent way, and expresses variation points in all assets in
terms of features, not in terms of asset-specific or product-specific
constructs.

This property immediately suggests the question, “What other
shared assets can be profitably added to the picture?” By
“profitably” we include the possibilities of faster engineering with
more automation, reducing errors, and leading to fewer people
doing tedious jobs by hand.

The next section will describe one very useful result of asking that
question.

6. Automating the Configuration of
Calibration Parameters
Calibration parameters were mentioned in Section 3 as fallout
from the fact that vehicle-specific software cannot be loaded in
the allotted time for manufacturing. A GM internal case study on
the software running on a particularly complex processor
identified 3,206 calibration parameters associated with the
software residing on that processor. When “proliferated” (that is,
when generated in all possible variation combinations) for the
customer-orderable combinations for one platform with one body
style, 27,041 calibration decisions and 106 released calibration
part numbers were required.

A company as large as GM can have more than 100
platform/body style combinations, resulting in more than 2.7
million decisions to calibrate one instance of the full product line
– and that’s just for the software on one processor. For software
on all processors across one instance of the product line, the total
number of decisions required to support all orderable
configurations could run to 50 million or more.

If it takes, on average, five minutes of engineering time to make
one decision, this results in over 2,000 staff-years of effort. (Five
minutes may seem too short for engineering decisions, but these
decisions are not made from scratch each time. Procedures are
developed to guide the decision process and most applications can
be based off similar applications, but each decision still needs to
be made and checked.)

That is the situation GM has been dealing with until now. Now,
however, the automation inherent in their chosen PLE approach is
presenting a new opportunity to make a dramatic impact on the
cost of managing calibrations.
First, some background: Calibrations come in two varieties:

• Configuration calibrations configure the controls to match
the desired feature and build content of the vehicle. For
example, if the vehicle has power seats, then the switches to
control them are connected with discrete wires.

• Performance calibrations tune the desired features to the
specific performance requirements for the vehicle; for
example, how fast a seat moves when the switch is activated.
Performance calibrations can be further divided.

o Deterministic performance calibrations have a
value directly determined by the requirements. For
example, the dome light should dim in 2 seconds.

o Experimental performance calibrations require an
experimental procedure to determine the correct
values. An example is the tuning of an anti-lock
brake system for controlling wheel slip.

Traditionally, an engineering team creates calibration procedures
that describe how to make each decision needed and “master”
calibration sets to compare the result to. Master calibration sets
cannot define each calibration value, but instead provide a
comparison set and instructions for how to interpret differences
between the master calibration and a developed calibration set.

Engineers then make the calibration decisions and perform
reviews and comparisons before product validation provides a
final confirmation of performance. For configuration calibrations
the real engineering value lies in the creation of the instructions in
the calibration procedures. If the instructions are accurate, the
only source of error is a human misinterpretation of the
instructions or requirements.

Adding calibration parameters as another type of shared asset in
the PLE paradigm of Figure 9 can offer a much better alternative
to these human-centric methods.

For configuration calibrations, instead of creating instructions for
humans to read and master calibrations for calibration engineers
to use, the engineering team renders the same instructions in tool-
actionable variation logic for each calibration expressed in terms
of the feature models for the product line. Because this logic will
be acted on by tools, not humans, the double check method of a
master calibration is no longer needed. When a Bill-of-Features
for a product family is created, it can be used with the variation
logic to generate all of the needed calibration sets. The product
line tools can automatically generate the full valid manufactured
feature proliferation for the product family and then generate a set
of calibrations for each vehicle build combination. As the system
is aware of the manufacturing variants, it can designate which
calibration set is needed for each manufactured variant populating
the release system.

This shifts the burden of calibration from one of engineering
decisions and actions around every calibration to one with a more
rigorous calibration procedure definition in the form of formal
variation logic.

Figure 10 shows an excerpt of a requirements specification that
defines the configuration calibration parameter called “Vehicle
Propulsion Type.” This parameter should be given a value that
corresponds to what kind of propulsion system is on the vehicle.
When a vehicle instance is produced, the propulsion type feature
will have a selected value, which will result in the correct variant
being chosen here in the requirements. GM’s tooling chain will
propagate this choice into design tools and eventually into the
calibration set for that vehicle instance.

Figure 10 A variation point in requirements that, when

exercised, will result in the correct value being specified for
the configuration calibration parameter.

A realistic estimate is that half of all of GM’s calibrations are
configuration in nature and we can therefore eliminate almost half
of the effort required to produce calibrations.
In addition, errors detected by validation with the generated
calibrations will now feed back as corrections in the precise
variation models resulting in permanent corrections that are not
subject to future human interpretation and error. Over time this
can lead to true near-zero error rates in this half of the
calibrations. The value of these improvements is measured in

hundreds to thousands of man/years per year, worth tens to
hundreds of millions of dollars per year.

The benefits of this PLE-based approach to calibration do not stop
here. While experimental performance calibrations require
activities beyond what variation logic can provide, those activities
themselves vary based on the features and vehicle configurations.
The experiments needed to determine the performance
calibrations are not always the same. Different feature
combinations or different hardware configurations will require
different experiments or different processing of results to generate
the calibration values.

Traditionally, calibration engineers evaluate criteria in the
calibration procedures to determine the correct experiments and
needed analysis for each vehicle configuration. By using a PLE-
enabled test management system, the test and analysis plan can be
instrumented with variation points related to the feature models. A
custom development plan can then be generated from the same
Bill Of Features used for the configuration calibrations. While the
savings from this integration are much smaller, this does eliminate
a manual planning exercise and reduces the opportunity for errors
and rework.

Continuing to ask “What other shared assets can be profitably
added to the picture?” is bringing more opportunities into focus.
As an additional example, variation points in design models can
(when exercised for a vehicle family or instance) produce a
catalog of data items that must flow over the vehicle’s networks.
By generating a network data item catalog for each vehicle
family, we should be able to more judiciously put networks on
vehicles that adequately serve, but not over-serve, their needs and
therefore further reduce costs.
Finally, future work entails extending this feature-based PLE
paradigm to manage variation in the product data management
(PDM) as well as the product lifecycle management (PLM) and
manufacturing phases of the enterprise.

7. Summary
This paper has introduced the special exigencies of automotive
engineering in a product line engineering context. The domain is
characterized by a very large number of individually complex
products with incomparably rich feature variation among them.
These three aspects, taken by themselves and together, lead to a
number of requirements on any PLE approach that hopes to work
in this environment.
We believe that this domain is well worth studying from a PLE
perspective for at least three reasons:

• Demanding environments and large organizations require
well-codified solutions that can be explained and taught –
qualities any organization would find useful.

• The number of automotive PLE case studies seems to be
surprisingly small.

• Showing PLE success in such a demanding domain can, we
hope, be a boon for introducing PLE into any industry.

For example, GM’s practice of modeling (and then making
choices from) Feature, subsystem, deployment, and part levels is,
in our experience, unique to the automotive domain. We believe
this is a useful separation of concerns that any product
engineering organization could adopt, but might not know to do
so except from reading narratives like this one. The notions of
product family trees, multistage configuration, and auto-

proliferation are not unique to the automotive realm but, in our
view, are under-represented in the PLE literature.

Even though GM has not yet finished the work of adding all of
their desired shared assets to their PLE mix, they are already
getting value out of their PLE efforts. Just defining an internally
consistent model of their vehicle product line, structured as a
family tree, with consistent configurations of Features,
subsystems, components, and hardware allocations (all compliant
with the thousands of intra- and inter-domain constraints in play)
represents a very big step in managing the complexity at hand. To
be able to do this in an end-to-end fashion under the auspices of
fully interoperating tool suite is a capability not available at GM
before now.

8. References
[1] Bachmann, F., Clements, P., “Variability in Software

Product Lines,” Technical Report CMU/SEI-2005-TR-012,
Software Engineering Institute, 2005.

[2] BigLever Software, “BigLever Software’s Product Line
Engineering Solution,”
http://www.biglever.com/solution/solution.html

[3] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J., Winkler, A. “Second Generation
Product Line Engineering Takes Hold in the DoD,”
Crosstalk – The Journal of Defense Software Engineering,
vol. 27, no. 1, January/February 2014.

[4] Clements, P.; Northrop, L. Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002.

[5] Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing
U.S. Army Return on Investment Utilizing Software Product-
Line Approach,” Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC), 2012.

[6] Flores, R., Krueger, C., Clements, P. “Mega-Scale Product
Line Engineering at General Motors,” SPLC 2012, Salvador,
Brazil, 2012.

[7] Jensen, Paul. (2009). “Experiences with Software Product
Line Development.” CrossTalk 22, 1 (January 2009): 11–14.

[8] Krueger, C. “Multistage Configuration Trees for Managing
Product Family Trees,” in Proceedings of the 17th
International Software Product Line Conference (SPLC
2013), Tokyo, Japan, Aug. 2013.

[9] Krueger, C., Clements, P. “Systems and Software Product
Line Engineering,” Encyclopedia of Software Engineering,
Philip A. LaPlante ed., Taylor and Francis, 2013.

[10] Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco. Software
Product Lines in Action, Springer, 2007.

[11] Paur, J. “Chevy Volt: King of (Software Cars),” Wired,
November 5, 2010, http://www.wired.com/autopia/2010/
11/chevy-volt-king-of-software-cars/

[12] Software Engineering Institute, “Catalog of Software Product
Lines,”
http://www.sei.cmu.edu/productlines/casestudies/catalog/ind
ex.cfm

[13] Software Engineering Institute, “Framework for Product
Line Practice (Version 5.0)” http://www.sei.cmu.edu/
productlines/frame_report/index.html

[14] SPLC Product Line Hall of Fame, http://splc.net/fame.html

