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ABSTRACT 
Automotive manufacturing ranks among the most extreme 
instances of systems and software product line engineering (PLE). 
The product family numbers in the millions, each product is 
highly complex in its own right, and the variation across products 
is literally astronomical in scale. This paper explores the aspects 
that make the domain extreme and the very specific implications 
they have for PLE. These implications include the need for 
efficient manufacturing, complexity management, concurrent 
development streams, globally distributed engineering and 
production, a hierarchical product family tree, multi-level 
variation binding, constraint management, and a highly robust and 
integrated PLE tooling environment. Happily, the PLE paradigm 
supporting these implications brings about a number of 
opportunities for analysis and automation that provide efficiencies 
of production previously unattainable. We focus on one example 
in depth: The management and automated generation of the many 
thousands of calibration parameters that determine vehicle-
specific software behavior. Throughout, we use the vehicle 
product line at General Motors, which we believe to be the 
world’s largest, to illustrate and ground our journey through 
automotive PLE. 

Categories and Subject Descriptors 
D.2.2 [Design tools and techniques]: product line engineering, 
software product lines, feature modeling 

General Terms 
Management, Design, Economics. 

Keywords 
Product line engineering, software product lines, feature 
modeling, feature profiles, bill-of-features, \variation points, 
product portfolio, product configurator, second generation product 
line engineering, automotive product lines 

 

1. Introduction 
Automotive manufacturing likely represents the most challenging 
environment for systems and software product line engineering 
(PLE) in the world today. The product family numbers in the 
millions, each product is highly complex in its own right, and the 
variation across products is astronomical in scale.  

These aspects of so-called mega-scale PLE have broad 
ramifications for the PLE approach and processes, both technical 
and organizational, that are required to successfully manage this 
level of complexity. To borrow the tag line from a well-known 
General Motors marketing campaign, this is not your father’s 
PLE.  
Automotive PLE is, we believe, worth studying for a number of 
reasons:  

• First, edge-of-the-envelope cases usually require better-
formulated approaches. Large organizations rolling out end-
to-end engineering solutions for complex problems need 
proven methods that are understandable, well-formulated, 
teachable, repeatable, and economical – all traits that any 
organization looking to adopt a PLE approach would find 
appealing.  

• Second, even though product line case studies abound (for 
example, [4][5][7][10][12][14]), automotive case studies are 
relatively few and far between. Hence, the knowledge and 
experience described in this paper may be put to direct use 
by other organizations working in the automotive realm.  

• And third, being able to cite advanced PLE concepts being 
intensely applied in one of the largest industries in the world 
can serve to instill confidence in the PLE approach for other 
industries as well: If PLE works in automotive, it should 
work anywhere. 

This paper discusses the complexities endemic to the automotive 
domain, and goes on to explore how these complexities inform 
and constrain the PLE approach needed to solve them. The good 
news is that this derived approach is rife with opportunities to 
improve the engineering process for the automotive domain in 
ways not previously attainable, and we will explore some of them. 
Our paper is organized as follows.  

• Section 2 defines three salient aspects of automotive mega-
scale product line engineering that set it apart from every 
other PLE application domain. 

• Section 3 explains how these aspects constrain and inform 
the product line engineering approach required to handle a 
mega-scale product line.  
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• Section 4 discusses the implications for tooling of the 
approach outlined in Section 3. 

• Section 5 explores new opportunities for engineering 
efficiency improvement that come about because of the PLE 
paradigm described by Sections 3 and 4.  

• Section 6 delves into one such opportunity in depth: 
Automated management and generation of the thousands of 
calibration parameters necessary to determine vehicle-
specific software behavior.  

• Section 7 summarizes. 

2. Three dimensions of mega-scale PLE 
General Motors’ product line of vehicles has been referred to as 
“mega-scale product line engineering” [6]. Fundamentally, what 
we mean by that can be understood in terms of three dimensions: 

• An extremely large product set. General Motors builds 
about 10 million cars and trucks a year, which translates to 
roughly one vehicle coming out of a factory somewhere 
around the world every four seconds. We are unaware of any 
other domain with a product line this large. 

• Extremely complex products. Modern automobiles can 
comprise several hundred separate engineering systems: 
engines, transmissions and brakes, of course, but also 
windshield wipers, interior lighting, entry controls, air bags 
and seatbelts, climate control, and infotainment, just to name 
a very few. Some of the systems are extraordinarily complex 
on their own – high beam headlights that “see” oncoming 
traffic at night and mask parts of their beam to avoid blinding 
the other driver, windshield wipers that know when it’s 
raining and turn themselves on, or infotainment systems that 
provide 4G LTE wireless connectivity (Figure 1).  

But recent years have seen complex interaction among 
different vehicle systems become the norm: A parking assist 
feature that must work with object detection sensors, 
steering, propulsion, and the transmission, for example, and 
account for the fact that different vehicles are equipped with 
different sensors, steering, propulsion, and transmissions. 
 

 
Figure 1 A Buick infotainment system showing current 

information from The Weather Channel  
(photo © General Motors) 

We are unaware of any other domain that can compare in 
product complexity. As one measure, the software to support 
all of the features and functionality chosen for a vehicle can 
run up to 10MSLOC – more code than is flying on either the 

Joint Strike Fighter or the Boeing 787 Dreamliner [11]. To 
run the software, a car may have dozens of electronic control 
modules, distributed around the vehicle on multiple 
networks, which leads to complexity in terms of optimal 
deployment, or assignment of functionality (and the software 
that provides it) to individual processors. 

• Extremely complex feature variation. GM serves a mass-
market consumer base that runs from entry-level vehicles in 
developing countries to high-end luxury vehicles with feature 
capability to match. They build over 60 models under seven 
brands and divisions. It takes many hundreds of features in 
thousands of flavors to fully describe every member of the 
product line. For GM, the unique number of manufactured 
product configurations (in terms of the software and 
electronics on board) runs to the few tens of thousands. 

The features exist in a complex tapestry of feature interaction 
constraints. To choose but one example, there are complex 
interactions among the vehicle’s exterior lights (low beam 
headlights, high beam headlights, tail lamps, brake lights, 
parking lights, daytime running lights, front fog lamps, rear 
fog lamps, cornering lamps, reversing lamps, and hazard 
flashers) in terms of which lights are allowed, disallowed, or 
required to come on with which others, under the regulatory 
requirements of any of the 150+ countries in which GM does 
business. The “lead me to my car” feature makes lights come 
on or flash when the driver presses a button on the key fob. 
Which lights come on, whether they flash or not, and how 
long they stay on all are specific to the region of sale and (of 
course) what exterior lights are actually on the vehicle. The 
electronics aboard every car has to get that behavior right for 
that car. 

 
Figure 2 A small part of GM’s product line: The Chevrolet 
Corvette Stingray, Buick Regal, GMC Sierra Denali, and 

Cadillac Escalade (photo © General Motors) 
To our knowledge, the complexity of the domain, richness of 
variation, and number of products is unprecedented in product line 
engineering. GM’s product line is, we believe, the largest and 
most challenging one in the world. 

But other companies in the automotive industry are working under 
exactly the same kind of complexity considerations. In the 
following section we will explore the implications for product line 
engineering solutions. 

3. Implications for PLE 
By themselves, the three aspects of mega-scale PLE outlined 
above are unlikely to be surprising to any reader. However, they 
lead to some unique considerations that this industry holds for 
PLE, especially PLE in the systems engineering realm, that may 
not be widely understood. 

Manufacturing is king. Although the engineering cost to develop 
the software and electronics to support features is sizable, it is far 
outweighed by the cost of manufacturing. Consider: 

• On the engineering side, it could take up to 5,000 engineers 
to carry out the full engineering activities for all electrical 
content in the product line. Distributed over different model 



years that are in simultaneous development, this works out to 
about $600 million of engineering effort for all the electrical 
systems content for one year’s worth of product. 

• On the manufacturing side, at a 10-million-vehicle-per-year 
volume an individual complex electrical subsystem can cost 
as much as a billion dollars per year in material cost. A 
single assembly plant can cost as much as a billion dollars 
and have more than 1000 employees.  

So, while reducing engineering costs is absolutely a goal, that 
engineering is done in the context of much higher manufacturing 
costs. In a product line of 10 million products, saving just 10 cents 
per product in manufacturing cost returns a million dollars to the 
company coffers. 
 

 
Figure 3 Chevrolet Cruze on the production line at Lordstown 

Assembly in Lordstown, Ohio (photo © General Motors) 
 

Among other things, concern for manufacturing efficiency brings 
about a need for the following: 

• Complexity management leads the way. If manufacturing 
is king, then complexity management is the crown prince. A 
car is built from thousands of parts, and each part may come 
in different forms or “flavors” depending on features chosen. 
For example, a car with “parking” windshield wipers (those 
that withdraw down under the hood to hide when turned off) 
will get a different part package than a car without. 
Maintaining a large parts inventory (and the supplier 
relationships that come with it) is enormously costly. Equally 
important, the physical space at each manufacturing station is 
limited; choosing the right part for the next vehicle rolling 
down the line from a small number of bins is essential. 
Whereas marketing may wish to offer many features and 
feature variants in unlimited combinations, attention to 
manufacturing cost limits the choices. 

As an example, each different configuration of sensors, 
actuators, and processors requires its own wiring harness to 
connect everything together. A wiring harness is a part, and 
an extremely complex one at that. It is often more 
economical to add a sensor or a processor to a vehicle, even 
when they are not used, than to develop, maintain, 
warehouse, and install the different wiring harnesses needed 
to support different configurations.  

This argument extends to various hardware subsystems as 
well – it may be cheaper to install a slightly more expensive, 

higher-capability subsystem even on vehicles that do not 
make use of the added capability. 

• Every second counts. Saving a mere second on each of ten 
million vehicles adds up to 116 days of manufacturing 
capacity (distributed across all of the factories, of course). 
Due to the manufacturing constraint of assembly line rate, 
only about 90 seconds are available to load all of the 
programming for all of the electronics on each vehicle.  

• “One size fits all” software with behavior controlled by 
calibration parameters. It is not physically possible to put a 
full software load onto the vehicle in 90 seconds, and so it is 
simply not possible for each vehicle to have its own 
customized software to match its chosen feature 
configuration. That means that the software must be pre-
loaded onto the various electronic control units, and that 
means that the same software must be capable of handling 
any feature configuration on the vehicle. To continue the 
windshield wiper example, the software to operate the wipers 
comes in a single component that includes code to “park” 
and “unpark” the wipers at the appropriate times. That 
parking/unparking code is always present but turned on for 
vehicles that have parking wipers, and turned off for those 
that don’t. The software’s behavior is determined by a set of 
calibration parameters, whose values are loaded into a 
physical memory block during manufacturing, since that load 
can be accomplished within the allotted time. Feature-
specific code is written to be predicated on the value of the 
appropriate calibration parameter. 

As we will see in Section 6, it takes many thousands of 
calibration parameters to configure the software for a 
vehicle.  Vehicle-specific “cal” configuration sets constitute 
separately maintained parts. 

The use of calibration parameters has other advantages. First, 
it makes it easy to confirm that the software was correctly 
loaded by checking the software memory space. Moreover, 
calibration parameters represent a completely standard 
variation mechanism [1] for all of the software, and they 
drive requirements specification, coding, and (particularly) 
testing in a consistent way: Testers test against a specific 
calibration configuration.  

• Perfect synchronization among engineering assets is 
essential. If every second counts during manufacturing, then 
shutting down an assembly line for minutes or hours is a 
major disruption that garners corporate-level scrutiny. That is 
what can happen when the wrong parts are queued up for the 
next vehicle coming down the line, or no parts, or duplicative 
and conflicting parts. Every decision made about every 
vehicle must result in a correct Bill of Materials with no 
possibility of error. Even a relatively infinitesimal error rate 
can lead to unacceptable cost.  

Even before manufacturing, the need for perfect 
synchronization extends to engineering development. For 
example, every configuration needs to be tested before it is 
cleared for manufacture, and the chosen tests need to line up 
perfectly with the configuration being tested to avoid missing 
a test that should have been run or running a test that is 
doomed to failure because it (incorrectly) tries to test a 
feature that the configuration doesn’t even have. 

All of these exigencies – complexity management, calibration 
parameters for one-size-fits-all software, and perfect 
synchronization – flow from the need to achieve the most efficient 



manufacturing possible, which in turn flows from the 
extraordinarily high number of richly varying product instances. 

Concurrent development streams. Because of the complexity of 
the products, designing a car for a model year must begin years in 
advance. In addition, products come out on an unforgiving yearly 
schedule. Therefore, each vehicle family has to be planned and 
developed taken though a years-long series of gates from concept 
and feasibility studies, to commitment to manufacture, to final 
design and parts selection, to the factory floor. GM may have up 
to 15 development streams in process simultaneously. To say that 
configuration management “takes on a special significance in the 
product line context” [13] is, in this setting, rather an 
understatement. Every piece of work must be correct for the 
product line’s current “cadence” (development stage) and 
coordinate and synchronize correctly with earlier and later 
cadences. Because all of the product line’s shared assets also have 
to be in sync with each other in each cadence, branching and 
merging are large-scale development events. 

Distributed engineering means modularized feature models. 
For PLE to work at large organizations, it would be impractical to 
have a single organizational unit tasked with the care and feeding 
of the shared PLE assets. Certainly having one global collection 
of feature declarations for an entire production line is out of the 
question. System engineers have no interest or need to see all of 
the feature diversity in other systems. For example, engineers for 
an automotive transmission system do not need to see feature 
abstractions that capture the diversity in the entertainment or GPS 
navigation system. It makes no sense to comingle them. It makes 
much more sense to modularize the feature model in a way that 
corresponds to the organizational structure of the enterprise, in 
which domain knowledge is collated into groups that correspond 
to the vehicle’s systems. 

Globally distributed engineering. To serve a worldwide market 
and save on shipping and distribution, factories are located around 
the globe to be close to customer segments. Engineering centers 
are also located around the world, with each given a specific area 
of responsibility. Thus, there is a critical need to keep the 5,000 or 
so product line engineers in sync in a number of ways.  

First, training is required to keep the engineers on the same page 
concerning the product line engineering approach, the systems 
and software development tools chosen, the CM approach being 
utilized, and more. GM has a broad training curriculum. For 
example, as a prelude to working in the PLE enabled requirements 
tool chain, engineers are asked to take the following courses that 
range in duration from a few hours to a whole day: 

• Requirements Management Engineering and Product Line 
Engineering Overview 

• Introduction To DOORS (the requirements engineering tool 
from IBM Rational) 

• Requirements Engineering with DOORS 

• Product Line Engineering with Gears (the PLE feature 
modeling tool and configurator from BigLever Software) 

• Managing Requirements Variation with Gears  

• Configuration Management in DOORS 

• Change Management with Rational Team Concert.  

In addition to training, GM holds mentoring workshops 
throughout the various system groups where experts explain the 
best practices in (for example) feature modeling for a product line. 
Technical leaders from each system area attend these workshops, 

and then mentor and teach their own teams. To date, there have 
been over 60 full-day feature modeling workshops held across the 
company; more are scheduled. 

Second, everyone’s work, no matter where it is carried out, needs 
to be compatible with the rest of the product line. General Motors, 
like many global companies, faces the challenge of coordinating 
the activities of engineers located in different time zones and 
different continents. 
Multi-level variation: General Motors, through its product line 
approach, is in the process of standing a long-held automotive 
paradigm on its head: Rather than derive the features you can 
support on a vehicle by first choosing the type and capability of its 
parts, GM is choosing to derive the parts needed from a choice of 
features. Features play a first-class role; all else follows. Feature 
models are producing a GM-wide feature catalog that the designer 
of a vehicle family can use to create a “Bill-of-Features,” which 
can then be used to derive all of the engineering assets for that 
family, including the Bill of Materials.  

To handle the variation complexity and account for the different 
kinds of engineering decisions that need to be made by people 
with different expertise, this process of vehicle definition can be 
usefully divided into a number of phases.  Each phase involves a 
set of decisions; subsequent phases make more detailed decisions 
based on those from the previous phase(s).  GM’s layered 
variation scheme is described here. 

First, vehicle designers choose the Features1 they want a vehicle 
family to have. For example, the front seat climate control Feature 
for a vehicle can come in many flavors, as shown in the example 
feature model of Figure 42.  

Engineering teams determine the specific set of feature 
combinations (called feature profiles) that they want to offer to 
the vehicle – these combinations correspond to the system 
configurations that have been developed and tested.  

Figure 5 and Figure 6 show two such offerings (feature profiles) 
for a front seat climate control Feature. The first is a high-end 
offering, with automatic (meaning that the system maintains a set 
temperature) dual-zone (meaning there are separate controls for 
the passenger as well as the driver) dual-mode (meaning the 
passenger can control temperature and mode) for both heating and 
cooling. The other is a low-end profile, essentially offering 
ventilation only, that might be chosen for an entry-level vehicle in 
an emerging market. 

After Feature decisions are made, vehicle designers then choose 
the packages of technology they want to put on the vehicle to 
support those Features. A technology package typically consists 
of sensors and/or actuators to effect some observable behavior in 
support of one or more Features. These technology packages are 
called subsystems, and they have variation as well.  

The front seat climate control Feature can be provided by many 
different subsystem flavors, which vary by fans, sensors, 
                                                                    
1 A Feature (with upper-case “F”) refers to a distinguishing characteristic 

of a vehicle that is nominally visible to a customer and may well be used 
to market the vehicle. This is in contrast to a feature (lower-case “f”) 
which is a purely PLE construct, as in “feature modeling.” There are 
feature models to describe Features and, as we shall see, feature models 
to describe aspects of a vehicle that are not Features. 

2 In this feature modeling language, features have types.  An enumerated 
type obligates us to choose exactly one of its children; a set type allows 
us to choose zero, any, or all of its children.  An atom type signifies a 
node that cannot be further elaborated. 



compressors, electronic versus mechanical activation, and much 
more. For example, a solar sensor can be installed if the vehicle 
has automatic climate control that keeps the cabin cooler if the 
sun is shining on the vehicle. Some subsystem flavors, then, will 
include the solar sensor and others will not. 
 

 
Figure 4 A feature model for the front seat  

climate control Feature 
 

 
Figure 5 A feature profile for a high-end front seat climate 

control system, offering dual zone dual mode heating  
and cooling 

 

 
Figure 6 A feature profile for a low-end front seat climate 

control system, offering essentially just fresh air circulation 
 

Sometimes, a Feature-level choice may fully determine the 
subsystems (and flavors thereof) that must be installed on a 
vehicle. Where that is not the case, subsystem engineers for the 
vehicle make those selections from among the compatible 
choices, based on criteria such as cost, weight, heat production, 

the subsystem’s contribution to the vehicle’s look and feel, and so 
forth. 

This partitioning between Features and subsystems is the 
manifestation of an important separation of design concerns 
between the end-user-visible Features and the technological 
implementations of Features. 

After the subsystem selection phase comes deployment, which 
accounts for variation in terms of what electronic control modules 
are on the vehicle, and where among them functionality is 
deployed. Complexity management notwithstanding, it is 
obviously more economical to build a vehicle with fewer chips if 
possible. So if, for example, a configuration does not include the 
memory seats Feature, then (all other things being equal) the 
memory seat electronics module may be safely omitted from the 
architecture, and any other functionality that might have been 
deployed to that module will have to be deployed elsewhere.  

Deployment as a separate selection phase continues the separation 
of concerns mentioned just above. Just as some subsystem choices 
are fully constrained by Feature choices, some deployment 
choices are fully constrained by subsystem choices and the 
choices of the vehicle’s electrical architecture. Where they are 
not, deployment engineers make the choice based on distributed-
system criteria such as communication needs, network 
availability, and performance constraints. 

It is envisioned that eventually there will be a phase for hardware 
parts selection as well, resulting in the full Bill of Materials. This 
vision is not yet realized, but is on the horizon as simply a 
consistent extension of the multi-level variation management 
scheme being described in this section. 

This separation of concerns reflected in the division among   
Feature, subsystem, deployment, and parts choices is directly 
represented in the modeling architecture and aligns very well with 
the systems engineering process.  Modeling is organized by 
functional area (e.g., exterior lights or climate control) and phase, 
with separate models for each referencing only those other models 
with which they share constraints.  This allows the early and 
abstract system feature phase to be modeled early in the systems 
engineering process and the more detailed phases to be modeled 
as the detailed design phases are performed. This modeling 
architecture also enables lightly coupled maintenance of the 
feature models:  When new features are added or existing models 
modified, individual models can often be updated in isolation or 
only with a very small external impact; all models will continue to 
integrate effectively into a full Bill of Features.       
The use of a Bill of Features has little impact on the time it takes 
to create an initial new Product definition.  There is a balance 
between each individual decision being somewhat easier to make, 
in a managed system with guidance on how to make choices and 
facilitation of the process, and the extra decisions to be made due 
to the completeness of the definition.  Where significant time and 
effort is saved is in the quality and value of the results.  The 
completeness and clarity of choices eliminates repeated emails, 
phone calls and discussion about the information that was 
previously unrecorded and the guidance and constraint checking 
eliminates repeated correction loops to achieve a correct and valid 
definition.  
A product line of product lines (of product lines…). Many 
automotive companies offer vehicles across multiple brands and 
support regional differences. These constitute sub-families in the 
product line. At General Motors, there are a relatively small 
number of platforms available, each of which can serve as the 



design and manufacturing foundation. For example, a platform 
might define a common chassis and major mechanical 
components for a family of vehicles. And vehicle families have 
sub-families. For example, the same GM platform underlies its 
GMC Yukon, Chevrolet Tahoe, and Cadillac Escalade family of 
sport utility vehicles, as well as long wheel base utility vehicles 
and pick-up trucks. Each platform, then, defines a product line 
within the overall GM product line. 

Each of these product lines is further differentiated to be sold in 
different regions of the world (and thus accommodate the 
regulatory and marketing differences in those regions). For 
example, there may be an Escalade family for China and another 
for North America – each its own product line within the platform 
product line. Within each one of those families are more sub-
families offering low-end to high-end trim levels – still more 
product lines. 

This product-line-of-product-lines approach defines a product 
family tree. At GM, platforms populate the top layer, with brand, 
regional, and trim level variations cascading down.  
So, where we spoke of “vehicle designers” in the previous section, 
we should more accurately have spoken of “vehicle family 
designers.”  
Defining a vehicle, then, becomes a matter of making choices at 
each level. All high-trim-level Buick Veranos destined for the US, 
for example, have a number of things in common with each other 
– they use the same platform, they conform to US regulations, and 
have many Feature and subsystem choices in common to give the 
Verano a distinctive look and feel.  

Choices might be positive (e.g., all Veranos have this air 
conditioning system) or might be “down-selection” choices (a 
Verano might have any of three high-end infotainment systems 
but they will never have any of the four low-end ones.) 

But there is still variation among this well-specified sub-family: 
options remain that can be chosen by dealers or end customers. 
The end customer orders a vehicle in their desired configuration; 
an assembly plant needs to be able to build any orderable 
configuration. The options that remain will, in most cases, still 
allow for too many variants to be defined than can be 
manufactured, and so (again invoking complexity management) 
the remaining variation is bundled into option packages to reduce 
the number of orderable configurations. 

Constraint management: Complexity management, mentioned 
previously, deals with restricting the set of legal configurations to 
a manageable set that can be manufactured profitably. However, 
even before complexity management has a chance to whittle down 
the set, a comprehensive set of constraints has to eliminate the 
countless illegal configurations. Large-scale automotive 
manufacturing has been going on for about a century, with 
electronics and software for decades, but new features are driving 
inter-system complexity at a never-before-seen scale. Not long 
ago brakes and steering (for example) had little, if anything, to do 
with each other. Now, however, there are Features such as driver 
aids that keep you in your lane and prevent you from running into 
obstacles that integrate both, along with sensors to detect the 
outside world and displays to let the driver know what is going 
on. These separate systems are subject to complex interaction 
constraints that must be captured as constraints. 

Constraints, which are expressed in terms of feature combinations, 
capture regulatory as well as technological realities. For example, 
daytime running lights are illegal in Japan, and so on any car 
whose region of sale (the options for which are captured in a 

feature model) includes Japan, the daytime running lights Feature 
must be omitted. By contrast, daytime running lights are legally 
required in northern Europe – another constraint. Similarly, it is 
not technologically feasible to put a sunroof in a soft-top 
convertible, and so a mutual exclusion constraint between these 
two Features is captured. 
If a Feature is included in a configuration then the subsystem(s) 
necessary to support it must also be included. For example, an 
obstacle avoidance Feature requires a flavor of the brake system 
to be on the vehicle that can respond to software commands, and a 
subsystem (and flavor thereof) that provides the necessary 
obstacle-detecting sensors. Conversely, a subsystem should be 
omitted if none of the Features it supports have been selected for a 
vehicle.  

These Feature/subsystem pairing requirements can also be 
captured as constraints. Figure 7 shows an example of this from 
the front seat climate control domain. 

Experience at GM shows that about 30-35% of the time it takes to 
build a feature model is devoted to capturing constraints among 
features. This activity captures “tribal knowledge” that is often 
only in the heads of experienced engineers, who (like all people) 
are subject to retirement or better job offers elsewhere. Before 
putting these constraints in a formal feature model, engineers for a 
particular system spent a considerable amount of time answering 
questions, often asked over and over again, about which features 
their system was (and was not) compatible with. Now the models 
can be consulted instead.  
 

 
Figure 7 A logic editor showing assertions for subsystem 

flavors that need to be present to support Feature choices for 
front seat climate control. This editor uses prefix notation to 
express logical predicates. Guidelines (comments that explain 

the constraints) are in purple. 
 

Summary. The three overriding aspects of the automotive domain 
described in Section 2 (large numbers of products, complex 
products, and complex variation) have a number of strong 
implications for automotive PLE. These include: 

• The overriding need to drive down manufacturing cost 

• One-size-fits-all software  

• Calibration parameters as the software variation mechanism 

• Complexity management (reducing the number of 
configurations possible) 

• Perfect synchronization of all stages of the lifecycle, from 
feature choices through manufacturing 

• Attention to expressing and enforcing complex constraints 
among features 

• Concurrent development streams 

• Global development 



• Multi-level phased variation choices (in GM’s case, variation 
chosen for Features, subsystems, deployment, and more) 

• Product lines of product lines 
We posit that most, if not all, of these aspects will be found in any 
comparably large automotive product line. GM is taking the 
additional step of opting to derive parts from feature choices 
instead of the other way around. 

4. Implications for PLE automated support 
Section 3 listed a number of conclusions about PLE for the 
automotive domain, using General Motors’ product line as the 
driving case, based on the three observations from Section 2 about 
mega-scale product lines. This section focuses specifically on the 
implications for PLE automated support. 

As we noted in the previous section, product line engineering for 
automotive electronics has been going on for decades. But what’s 
new is the almost unfettered interaction among the many systems 
that populate a modern vehicle. Keeping track of the variation in 
each system and the feature interactions among systems now leads 
to too many possible combinations to mange by hand or with ad 
hoc methods. The labor is too demanding and the chance of 
making mistakes too great. 

Given that automation is part of the automotive PLE approach, 
what must it do? The list includes the following: 

• Feature modeling. There must be a concise, consistent way 
to model features across the enterprise, and so the tooling 
must provide a useful, easy-to-learn feature modeling 
language with enough richness to capture the kinds of 
variation seen in the automotive domain. 

Put another way, the tooling must provide a single source of 
truth for features. The pressing need for perfect 
synchronization among all phases of engineering means that 
there must be a single source of truth for features, because 
they cross-cut every aspect of the engineering lifecycle: 
requirements, designs, code, calibrations, tests, network 
analysis, and more.  

Moreover, since many separate groups are involved, often 
globally distributed, the feature language must include 
constructs for integrating separately developed feature 
models together. Having hundreds of separate engineering 
teams collaborate to build a single, gigantic, monolithic 
feature model is untenable. 
Flores et al. [6] describes the feature language in use at 
General Motors, including the constructs the language 
provides for integrating separately-developed feature models 
and representing product lines of product lines. 

• Constraint support. Not only must the tool’s feature 
modeling language be rich enough to express the many kinds 
of constraints found in the automotive realm (as for the 
example shown in Figure 7), it must help enforce them as 
well. Vehicle family designers may make well over a 
thousand decisions in the course of bringing a line to market, 
and every one of those decisions must be in accordance with 
every one of the applicable constraints. The tooling must 
provide a way to guide the vehicle family designers in their 
task by, for example, presenting the set of constraint-
compliant choices that are currently available, given previous 
choices already made. 
Without such automated support, engineering teams for the 
various systems can continue to expect phone calls, texts, 

and e-mails asking whether a particular system variant can be 
put on a particular vehicle. With that automated support, the 
vehicle family designers can immediately see the choices that 
are available and the ones that are not. For the latter, they see 
what constraints those choices would violate.  

Figure 8 shows a tool that helps vehicle family designers 
make their Feature and subsystem selections. The designer 
has just chosen the “AutoDualTempHeatCool” flavor of the 
front seat climate control Feature. The tool presents an 
engineer-authored guideline explaining what the option 
entails; the upper right window confirms that no constraints 
(called “assertions” here) are violated by this choice. 

• Consistent variation management in artifacts across the 
full engineering lifecycle. For each vehicle family, 
requirements, system architectures and designs, code, test 
cases, documentation, calibration parameter sets, deployment 
decisions, parts lists, and more all need to line up. In the 
language of the SEI’s Framework for Product Line Practice 
[13], “Product builders use the [shared] assets… to produce 
products that meet their respective requirements.” A product 
means all of the engineering lifecycle artifacts just 
mentioned, instantiated to reflect the vehicle family being 
produced.  

 
Figure 8 A selection "wizard" that helps vehicle family 

designers make Feature and subsystem choices in compliance 
with feature constraints 

 
A complete systems and software PLE lifecycle solution 
requires that all of these artifacts are endowed with variation 
points [1], which can be exercised to correspond to feature 
choices to produce demonstrably consistent instances 
specific to each vehicle or vehicle family, as desired. 

Common representation of variation points is key to 
achieving traceability from requirements to deployment. 
Traceability is of great concern for GM. Every requirement 
needs to be traceable to one or more design elements that 
satisfy it, and each design element should be traceable back 
to one or more requirements that it satisfies. Each design 
element needs to be traceable forward to its implementation 
and vice versa. Each requirement needs to be traceable to one 
or more test cases that validate whether or not the 
requirement is satisfied in the final product. Managing all of 
these artifacts consistently, by tying their variations to the 
single source of feature truth, is the key to achieving this. 



 

 
Figure 9 Feature profiles drive the exercising of shared assets’ 

variation points by the configurator to produce product-
specific instances. 

 

Figure 9 illustrates the concept. A configurator (in GM’s 
case, Gears [2]) exercises variation points in the shared 
assets. The shared assets contain variation points. A variation 
point is simply a place in a shared asset that needs to differ 
based on what feature it is supporting. Variation points are 
thus expressed in terms of features. Feature profiles (which 
reflect feature selections) are used by the configurator to 
exercise the variation points, to produce a feature-consistent 
set of product-specific asset instances. 
Thus, the automation should provide a consistent language 
and mechanisms for expressing variation points across all 
lifecycle artifacts. 

• Lifecycle-wide integration. A large automotive company 
will have made tooling choices for each of these artifacts. In 
GM’s case, requirements are stored in IBM Rational’s 
DOORS tool, design models in Rhapsody, and so forth. To 
produce the instantiations, the PLE tooling has to work with 
each of these tools and preserve the traceability that exists 
among the artifacts stored in them. 

• Multistage configuration. To support the product line of 
product lines approach, the tooling has to enable making 
some vehicle-level decisions while intentionally deferring 
others until lower in the hierarchy. For instance, for a 
platform we may be able to bind many platform-level 
choices: the number of doors and seats, for example. But 
many other choices will be left wide open for now. For a 
vehicle family, we may be able to make more choices or rule 
out other choices. For example, some propulsion systems 
may be allowed while others will be disallowed. For a 
particular vehicle family destined for a particular region with 
a particular trim level, we may be able to make most of the 
choices, but still leave other choices unbound and presented 
as options to the end consumers. In a product family tree, 
each node inherits the choices made by its ancestor nodes. 
Thus, as we descend down a path through the tree, we 
encounter a monotonically increasing amount of feature 
selection. This concept that combines staged decision-
making, feature down-selection (ruling out choices) as well 
as making positive choices, and inheriting the decisions of a 
node’s ancestors, is called multistage configuration [8].  

• Keeping options optional: Auto-proliferation. Automotive 
customers order their vehicles in their desired configurations, 

choosing from available options and option packages. An 
assembly plant needs to build any orderable configuration. 
Complexity management dictates that not all possible 
combinations are orderable. Therefore, special 
manufacturing feature declarations exist to align the 
developed and released engineering content with the valid 
orderable configurations. These manufacturing features are 
never fixed in the product definition. They are by definition 
optional. No vehicle family designer ever fully binds the 
variation present in the lowest-levels of the product family 
tree. Their job is done when they have taken the variation 
down to the point when they are willing to provide any of the 
remaining combinations to their customers. These remaining 
combinations show up as customer-selectable option 
packages. 
And yet, factories need to manufacture specific vehicles in 
specific configurations in which all variation is bound. And 
so it is left to the tooling to bridge the gap between the 
variation intentionally left in by the engineers and a fully-
defined vehicle that is manufactured. 

To address this, GM’s PLE tools have a new auto-
proliferation capability to automatically generate the fully 
proliferated set of feature combination for each valid 
orderable combination. This allows the product definers to 
operate in the language of options while still providing the 
precise complete definitions needed for engineering, release, 
and manufacturing.  

• Industrial strength. Automation to support PLE at this scale 
needs to have a solid industrial pedigree. It also needs to be 
backed by an organization that has a responsive support 
group to quickly address any issues, an education and 
training department to helps the thousands of PLE engineers 
learn the technology and best practices in using it, and an 
evolution roadmap that will address the automaker’s future 
PLE needs. 

5. New opportunities for engineering 
efficiencies 
Sections 2 through 4 have laid out the landscape of automotive 
PLE and shown how the exigencies of this particular domain lead 
to a demanding set of needs for the PLE approach and its 
supporting automation. In particular, the paradigm of Figure 9 
emerged to provide the necessary lifecycle-wide integration of 
diverse kinds of shared assets, all with consistently-expressed and 
consistently-exercised feature-based variation points, to meet the 
need for perfect synchronization through engineering and into 
manufacturing. The PLE tooling (in GM’s case, Gears [2]), in 
addition to handling the configurator duties, also provides the 
feature modeling language. It allows separately developed feature 
models to be expressed and integrated. It also supports expressing 
a full range of feature-based constraints, provides multi-level 
variation support for designing vehicle families while enforcing 
those constraints. Finally, it provides multistage configuration, as 
well as auto-proliferation. 

One very salient property of the paradigm of Figure 9 is that it is 
intentionally agnostic with respect to shared asset type. It uses the 
same basic variation language for all kinds of shared assets, 
manages traceability links among assets in a correct and 
consistent way, and expresses variation points in all assets in 
terms of features, not in terms of asset-specific or product-specific 
constructs.  



This property immediately suggests the question, “What other 
shared assets can be profitably added to the picture?” By 
“profitably” we include the possibilities of faster engineering with 
more automation, reducing errors, and leading to fewer people 
doing tedious jobs by hand. 

The next section will describe one very useful result of asking that 
question. 

6. Automating the Configuration of 
Calibration Parameters 
Calibration parameters were mentioned in Section 3 as fallout 
from the fact that vehicle-specific software cannot be loaded in 
the allotted time for manufacturing. A GM internal case study on 
the software running on a particularly complex processor 
identified 3,206 calibration parameters associated with the 
software residing on that processor. When “proliferated” (that is, 
when generated in all possible variation combinations) for the 
customer-orderable combinations for one platform with one body 
style, 27,041 calibration decisions and 106 released calibration 
part numbers were required.  

A company as large as GM can have more than 100 
platform/body style combinations, resulting in more than 2.7 
million decisions to calibrate one instance of the full product line 
– and that’s just for the software on one processor. For software 
on all processors across one instance of the product line, the total 
number of decisions required to support all orderable 
configurations could run to 50 million or more. 

If it takes, on average, five minutes of engineering time to make 
one decision, this results in over 2,000 staff-years of effort. (Five 
minutes may seem too short for engineering decisions, but these 
decisions are not made from scratch each time. Procedures are 
developed to guide the decision process and most applications can 
be based off similar applications, but each decision still needs to 
be made and checked.)  

That is the situation GM has been dealing with until now.  Now, 
however, the automation inherent in their chosen PLE approach is 
presenting a new opportunity to make a dramatic impact on the 
cost of managing calibrations. 
First, some background:  Calibrations come in two varieties:  

• Configuration calibrations configure the controls to match 
the desired feature and build content of the vehicle. For 
example, if the vehicle has power seats, then the switches to 
control them are connected with discrete wires.  

• Performance calibrations tune the desired features to the 
specific performance requirements for the vehicle; for 
example, how fast a seat moves when the switch is activated. 
Performance calibrations can be further divided. 

o Deterministic performance calibrations have a 
value directly determined by the requirements. For 
example, the dome light should dim in 2 seconds.  

o Experimental performance calibrations require an 
experimental procedure to determine the correct 
values. An example is the tuning of an anti-lock 
brake system for controlling wheel slip.  

Traditionally, an engineering team creates calibration procedures 
that describe how to make each decision needed and “master” 
calibration sets to compare the result to. Master calibration sets 
cannot define each calibration value, but instead provide a 
comparison set and instructions for how to interpret differences 
between the master calibration and a developed calibration set. 

Engineers then make the calibration decisions and perform 
reviews and comparisons before product validation provides a 
final confirmation of performance.  For configuration calibrations 
the real engineering value lies in the creation of the instructions in 
the calibration procedures.  If the instructions are accurate, the 
only source of error is a human misinterpretation of the 
instructions or requirements. 

Adding calibration parameters as another type of shared asset in 
the PLE paradigm of Figure 9 can offer a much better alternative 
to these human-centric methods.  

For configuration calibrations, instead of creating instructions for 
humans to read and master calibrations for calibration engineers 
to use, the engineering team renders the same instructions in tool-
actionable variation logic for each calibration expressed in terms 
of the feature models for the product line. Because this logic will 
be acted on by tools, not humans, the double check method of a 
master calibration is no longer needed. When a Bill-of-Features 
for a product family is created, it can be used with the variation 
logic to generate all of the needed calibration sets. The product 
line tools can automatically generate the full valid manufactured 
feature proliferation for the product family and then generate a set 
of calibrations for each vehicle build combination. As the system 
is aware of the manufacturing variants, it can designate which 
calibration set is needed for each manufactured variant populating 
the release system.  

This shifts the burden of calibration from one of engineering 
decisions and actions around every calibration to one with a more 
rigorous calibration procedure definition in the form of formal 
variation logic.  

Figure 10 shows an excerpt of a requirements specification that 
defines the configuration calibration parameter called “Vehicle 
Propulsion Type.” This parameter should be given a value that 
corresponds to what kind of propulsion system is on the vehicle. 
When a vehicle instance is produced, the propulsion type feature 
will have a selected value, which will result in the correct variant 
being chosen here in the requirements. GM’s tooling chain will 
propagate this choice into design tools and eventually into the 
calibration set for that vehicle instance. 
 

 
Figure 10 A variation point in requirements that, when 

exercised, will result in the correct value being specified for 
the configuration calibration parameter. 

 

A realistic estimate is that half of all of GM’s calibrations are 
configuration in nature and we can therefore eliminate almost half 
of the effort required to produce calibrations.  
In addition, errors detected by validation with the generated 
calibrations will now feed back as corrections in the precise 
variation models resulting in permanent corrections that are not 
subject to future human interpretation and error. Over time this 
can lead to true near-zero error rates in this half of the 
calibrations. The value of these improvements is measured in 



hundreds to thousands of man/years per year, worth tens to 
hundreds of millions of dollars per year. 

The benefits of this PLE-based approach to calibration do not stop 
here. While experimental performance calibrations require 
activities beyond what variation logic can provide, those activities 
themselves vary based on the features and vehicle configurations. 
The experiments needed to determine the performance 
calibrations are not always the same. Different feature 
combinations or different hardware configurations will require 
different experiments or different processing of results to generate 
the calibration values.  

Traditionally, calibration engineers evaluate criteria in the 
calibration procedures to determine the correct experiments and 
needed analysis for each vehicle configuration. By using a PLE-
enabled test management system, the test and analysis plan can be 
instrumented with variation points related to the feature models. A 
custom development plan can then be generated from the same 
Bill Of Features used for the configuration calibrations. While the 
savings from this integration are much smaller, this does eliminate 
a manual planning exercise and reduces the opportunity for errors 
and rework. 

Continuing to ask “What other shared assets can be profitably 
added to the picture?” is bringing more opportunities into focus. 
As an additional example, variation points in design models can 
(when exercised for a vehicle family or instance) produce a 
catalog of data items that must flow over the vehicle’s networks. 
By generating a network data item catalog for each vehicle 
family, we should be able to more judiciously put networks on 
vehicles that adequately serve, but not over-serve, their needs and 
therefore further reduce costs. 
Finally, future work entails extending this feature-based PLE 
paradigm to manage variation in the product data management 
(PDM) as well as the product lifecycle management (PLM) and 
manufacturing phases of the enterprise.  

7. Summary 
This paper has introduced the special exigencies of automotive 
engineering in a product line engineering context. The domain is 
characterized by a very large number of individually complex 
products with incomparably rich feature variation among them. 
These three aspects, taken by themselves and together, lead to a 
number of requirements on any PLE approach that hopes to work 
in this environment. 
We believe that this domain is well worth studying from a PLE 
perspective for at least three reasons: 

• Demanding environments and large organizations require 
well-codified solutions that can be explained and taught – 
qualities any organization would find useful.  

• The number of automotive PLE case studies seems to be 
surprisingly small.  

• Showing PLE success in such a demanding domain can, we 
hope, be a boon for introducing PLE into any industry. 

For example, GM’s practice of modeling (and then making 
choices from) Feature, subsystem, deployment, and part levels is, 
in our experience, unique to the automotive domain. We believe 
this is a useful separation of concerns that any product 
engineering organization could adopt, but might not know to do 
so except from reading narratives like this one. The notions of 
product family trees, multistage configuration, and auto-

proliferation are not unique to the automotive realm but, in our 
view, are under-represented in the PLE literature. 

Even though GM has not yet finished the work of adding all of 
their desired shared assets to their PLE mix, they are already 
getting value out of their PLE efforts. Just defining an internally 
consistent model of their vehicle product line, structured as a 
family tree, with consistent configurations of Features, 
subsystems, components, and hardware allocations (all compliant 
with the thousands of intra- and inter-domain constraints in play) 
represents a very big step in managing the complexity at hand. To 
be able to do this in an end-to-end fashion under the auspices of 
fully interoperating tool suite is a capability not available at GM 
before now.  
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