
	This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	Arms	Regulations	
or	the	U.S.	Export	Administration	Regulations.	
	

Product Line Engineering Meets Model Based Engineering
in the Defense and Automotive Industries

Bobbi Young

Raytheon Integrated Defense Systems
Bobbi.Young@raytheon.com

Rick Flores

General Motors
rick.r.flores@gm.com

Judd Cheatwood, Todd Peterson
General Dynamics Mission Systems

{Judd.Cheatwood, Todd.Peterson}@gd-ms.com

Paul Clements
BigLever Software

pclements@biglever.com

ABSTRACT
Product line engineering and model based engineering are two
powerful engineering approaches that each bring significant
advantages to system engineering projects. This paper explores
how three companies – Raytheon, General Dynamics, and General
Motors – are combining these two paradigms in unique and
innovative ways in very challenging application domains to
achieve engineering goals of critical importance to them.

CCS CONCEPTS
• Software and its engineering à Software product lines;

KEYWORDS
Product line engineering, model-based engineering, feature
models, feature profiles, variation points, product configurator,
feature-based product line engineering, PLE factory,

ACM Reference Format: Bobbi Young, Rick Flores, Judd
Cheatwood, Todd Peterson, Paul Clements, Product Line
Engineering Meets Model Based Engineering in the Defense and
Automotive Industries. In Proceedings of SPLC ’17, Sevilla,
Spain, September 25-29, 2017, 10 pages.

DOI: 10.1145/3106195.3106220

1. INTRODUCTION
Model based engineering is “an approach to engineering that uses
models as an integral part of the technical baseline that includes
the requirements, analysis, design, implementation, and
verification of a capability, system, and/or product throughout the
acquisition life cycle” [6]. A model, in turn, is “a physical,
mathematical, or otherwise logical representation of a system,
unity, phenomenon, or process” [2]. Model based engineering is
held in contrast to approaches in which informal prose or
diagrams serve as the basis for the information exchange among
stakeholders in a systems engineering process. Models, because of

their physical or mathematical formulation, tend to be less
ambiguous and more amenable to high-confidence analysis, thus
reducing errors and re-work in the systems engineering process.

The purpose of this paper is to discuss the combining model-based
engineering (MBE) with product line engineering (PLE), and to
describe ways in which the combination is already in industrial.
The examples originate with three Fortune 150 companies:
Raytheon, General Dynamics, and General Motors. While their
technical approaches are similar, their goals and results are (we
hope) interestingly different and together illustrate a broad picture
of some of the ways that PLE+MBE is being used in industry
today.

2. FEATURE-BASED PRODUCT LINE
ENGINEERING
All three companies profiled in this paper employ a very specific
approach to PLE. The approach has often been referred to as
“second generation PLE” [5] but we will refer to it here as
“Feature-Based PLE,” to align with a forthcoming ISO standard
that will describe the approach by that name.

Figure 1 PLE as a factory (figure used with permission of

BigLever Software)
In Feature-based PLE, the engineering assets are shared across the
product line. These shared assets can be whatever artifacts are
representable digitally. These shared assets are created and
maintained as supersets, meaning that they contain any content
needed to support any of the products. A configurator (in this
paper we use Gears [1]) produces product-specific instances by
actuating a product — that is, exercising variation points in the
supersets according to the feature choices for that product. A
feature is a distinguishing characteristic that sets products in a

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only. SPLC '17, September 25-29, 2017, Sevilla, Spain

© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-5221-5/17/09…$15.00

http://dx.doi.org/10.1145/3106195.3106220

	This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	Arms	Regulations	
or	the	U.S.	Export	Administration	Regulations.	
	

product line apart from each other. A variation point is a
specification attached to a piece of content in a shared asset that
stipulates the feature choices under which that content is needed
in the product-specific instance of that shared asset. The collection
of feature choices for a product is called a Bill-of-Features, and is
drawn from all of the available feature choices for the product
line, which are captured in a feature catalog. Figure 1illustrates.

3. COMMON APPROACH FOR MBE AND
PLE TOGETHER: MODELS BECOME A
PLE SHARED ASSET
The three companies represented use MBE to accomplish specific
goals for the design and engineering of their respective systems –
plural. And therein lies the motivation for combining MBE with
PLE. In that light, it becomes apparent that the MBE models need
to efficiently and systematically manage variation. One model
won’t do. To support their respective product lines, each
company’s models need to be able to support product-specific
model instances, just like their requirements, code, tests, and other
shared assets do.

Therefore, each company described turns to MBE to handle the
modeling chores important to them, and turns to PLE to handle
the variation inherent in the models that reflects the diversity in
the products they are building. All three companies use Feature-
based PLE to configure their models by attaching them as shared
assets (along with other shared assets) to their respective PLE
factories, and configure them using the same feature selections
that drive the configuration of their other shared assets.

4. RAYTHEON: INTEGRATED
AIR/MISSILE DEFENSE
The Raytheon Company is a technology and innovation company
specializing in defense, civil government, and cybersecurity
throughout the world. They employ 63,000 employees
worldwide. MBE and PLE are both in use, to varying degrees,
throughout Raytheon. We will relate the experience of one
product area in particular, in the radar domain, where the two are
being applied together.

To protect confidentiality we will use a fictitious but
representative example called GloboShield. GloboShield’s
mission is to protect a theater from air and missile attack by
detecting, tracking, identifying, and destroying airborne threats. A
system includes sensors, displays, planning functions, threat
evaluation, health and status monitoring, communication with
friendly systems for information exchange, and more. Customers
can order GloboShield in different configurations, and with
different levels of capability. For example, GloboShield provides
options for its Threat Assessment capability, which we will use to
illustrate how model variation is handled. The customer may

• Choose or omit the Threat Determination service to identify
a threat that could be an air-breathing target (ABT) and/or a
theater ballistic missile (TBM).

• Choose or omit a Threat Ranking and/or a Threat Warning
service.

Figure 2 is a sketch of a system architecture for GloboShield,
identifying its major subsystems along with some explication
about each. (Figure 2 does not tell the whole architectural story,
of course, but for the purposes of our discussion, we will let
Figure 2 stand in for the entire range of useful architecture
documentation.) Each instance of GloboShield will have its own

system architecture that reflects the product choices outlined
above as well as many others, but in all cases one that is derived
from the architecture illustrated in Figure 2. (For the purposes of
this paper, it is not important to understand the details of the
“master” or derived architectures.)

Product architectures are subsets of the master architecture. For
example, a product architecture may omit some of the components
that populate the master architecture (and therefore the
relationships or “connectors” that tie those components to other
components). This typically occurs when those components
provide a capability that has not been chosen for a product. A
product architecture may vary from the master in other ways; for
example, a component may exist in both the master and a derived
product architecture, but that component will be of a different
“flavor” in the product, or bind certain choices about it that are
available in its master-architecture analog.

Figure 2 GloboShield master architecture view identifying

major architectural components
To move from the documentation-centric realm into the model-
based realm, these architectural designs need to be captured in a
more formal representation. Raytheon, like many systems
engineering organizations, uses the System Modeling Language
(SysML) as its preferred language in which to represent system
architectures. The master and derived architectures can be
represented in SysML. Raytheon uses Rhapsody from IBM
Rational as the modeling tool with which to capture SysML
models. In alignment with MBE, these choices enable analysis
and derivation (for example, code generation) to be brought to
bear, whereas any utilization of the architectural information
before was purely manual and fraught with error-prone and labor-
intensive work.

To treat our architecture models in accordance with the PLE
Factory model of Figure 1, the systems engineering team
developed a superset view of the architecture to capture those
systems that would be variant. Figure 3 captures the variations
identified for the structure of the enterprise view. The gear icon on
some of the blocks (along with the Variation Point stereotype in
the model for these elements) denotes model elements that are
variation points – that is, they do not appear in every member of
the product line.

In order to identify the variant features, a feature model was
developed. Raytheon has chosen the Gears PLE tool and
framework [1] to serve as its feature modeling tool and the PLE
Configurator shown in Figure 1.

The feature model captures distinguishing characteristics that set
products apart – that is, only those features that represent variation
are modeled. The feature model is a hierarchical decision tree that

	This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	Arms	Regulations	
or	the	U.S.	Export	Administration	Regulations.	
	

identifies and defines opportunities for variation; making
selections in such a decision tree defines a particular product.

Figure 3 GloboShield block definition diagram superset with

variation
Figure 4 shows part of the GloboShield feature model. It describes
the variant features a customer may choose from for a specific
product. Features defined in the feature model can be capabilities
(i.e., functional, operational, presentation, implementation
techniques, operating systems, and operating platforms) that
represent variation among products. Some options may be
dependent on other options and need to be included or cannot be
combined with other options. These dependencies and constraints
are defined as assertions and are captured as rules.

Figure 4 Feature model (excerpt) for threat assessment

Feature profiles are defined from the feature model by selecting
the feature options that define a specific product; for instance, a
feature profile that chooses the Threat Determination option for a
GloboShield product instance, or another that selects Threat
Determination, Threat Warning, and Threat Ranking for a
different GloboShield product instance. Feature choices must be
mapped to the variation within shared assets, so that the
configurator can reflect the feature choice in the configuration of
the shared asset. This is accomplished by adding variation points
to the assets. Figure 5 shows a variation point that has been added
to the ThreatDetermination block in Rhapsody. The variation
point logic is written in a logic language that maps to the feature
declarations. The logic tells Gears what feature choices or
combination of feature choices will cause that block to be
included in the projection, or product-specific instantiation of this
shared asset. In the Rhapsody model, when Gears produced the
Threat Determination ABT product configuration (Figure 6), the

model elements with the gear icon are either highlighted in yellow
if included, or a red slash if excluded, from the projection. All
other model elements not tagged with variation points are
common and will always be included in the projection.

Figure 5 Rhapsody view of Gears variation points

Figure 6 Threat assessment block diagram after actuation for

the threat determination ABT product
A single actuation step will produce not only a block diagram but
also any other diagrams that have been similarly imbued with
variation points. The result is a holistic set of models, consistently
configured to represent the same product instance.
When the PLE factory produces a product-specific architectural
model in Rhapsody, we can then carry out all of our MBE-based
analysis and downstream transformations. The derivation of the
product architecture(s) from the master architecture of Figure 2 is
now fully automated, happens in a few seconds, and is not prone
to the errors of manual derivation. Moreover, we have only the
superset to store, maintain, and update. The derived architectures
are not maintained on their own, but merely re-generated when
the superset changes. Thus, we have cut the artifacts we need to
manage and store by 80% (from 5 to 1).

5. GENERAL DYNAMICS:
MBE+PLE+PLM
General Dynamics employs 99,500 people world wide, is listed as
#88 on the 2016 Fortune 500, and is the world’s fifth largest
defense contractor. The product line from which this MBE+PLE
story is taken is Live Training Transformation (LT2), a family of
training systems developed primarily for the US Army but also
used by other US military services.

Each member of the LT2 product line carries out a training
scenario for one or more warfighters1. Generally speaking, the

1 “Warfighter” is a generic term for soldier, sailor, airman, or Marine.

bdd [Package] DesignSynthesisPkg [GloboShield IAMD Corp]

GloboShield_IAMD
«Block,Corporation»

GSIAMD_C2
«Block,ProductLine,BusinessUnit»

1

1

GSIAMD_Effectors
«Block,ProductLine,BusinessUnit»

1

1

GSIAMD_Sensors
«Block,ProductLine,BusinessUnit»

1

1

AOCComm
«Block,Subsystem»

ADOCComm
«Block,Subsystem»

EWR
«Block,System,VariationPoint»

1

1

LLRS
«Block,System,VariationPoint»

1

1

GSIAMD_MaintenanceAndLogisticsDepot
«Block,CrossProductTeam»

1

1

GroundBasedEffector
«Block,System,VariationPoint»

1

1

AirBasedEffector
«Block,System,VariationPoint»

1

1

ShipBasedEffector
«Block,System,VariationPoint»

1

1

ADOC
«Block,System»

AOC
«Block,System»

1 1

ThreatAssessmentSystem
«Block,Product,Subsystem»

1

1

1

1

1

1

1

1

EngagementManagementSystem
«Block,Product,Subsystem»

1

1

1

1 1

1

1

1

1

1

GSIAMD_Engineering
«Block,CrossProductTeam»

1

1

ibd [Package] DesignSynthesisPkg
[ThreatAssessment]

ThreatDetermination_Service
«Block,Product,VariationPoint»

Core:int

interface_136
port_10

Interface_3port_5

Interface_83

pThreatRanking_Service

Interface_62pEWR

ThreatRanking_Service
«Block,Product,VariationPoint»

Interface_7port_6

Interface_82

pADOCCommander

Interface_83

pThreatDetermination_Service ThreatWarning_Service
«Block,Product,VariationPoint»

interface_134port_7

pFreedoniaAllies

pFreedoniaMilitaryHQ

pFreedoniaCivilHQ

pADOCCommander

TBM
«Block,VariationPoint»

pMoronicaLackeys

Interface_81
pEWR

EWR
«Block,System,VariationPoint»

Interface_81

pTBM

Interface_62pThreatDetermination_Service

ADOCCommander

«flow»

«flow»
ADOCCommander

ThreatDetermination_COTS
«Product,Block,VariationPoint»

Variation:int

Interface_3port_9

ThreatDetermination_NDI
«Block,Product,VariationPoint»

Variation:int

Interface_3port_3

ThreatDetermination_GSSpecial
«Block,Product,VariationPoint»

Variation:int

Interface_3port_3

ThreatRanking_COTS
«Block,Product,VariationPoint»

Interface_7port_0

ThreatRanking_NDI
«Block,Product,VariationPoint»

Interface_7port_0

ThreatRanking_GSSpecial
«Block,Product,VariationPoint»

Interface_7port_0

ThreatWarning_COTS
«Block,Product,VariationPoint»

interface_134port_0

ThreatWarning_NDI
«Block,Product,VariationPoint»

interface_134port_0

ThreatWarning_GSSpecial
«Block,VariationPoint»

interface_134port_0

ThreatDetermination_Contract
«Interface,VariationPoint»

Interface_3
port_4

Interface_3
port_3

Interface_3port_1

Interface_3port_0

ThreatRanking_Contract
«Interface,VariationPoint»

Interface_7

port_3

Interface_7

port_2

Interface_7

port_
1

Interface_7port_0

ThreatWarning_Contract
«Interface,VariationPoint»

interface_134port_3
interface_134

port_2
interface_134

port_1

interface_134port_0

LLRS
«Block,System,VariationPoint»

interface_136port_1

interface_135pABT

ABT
«Block,VariationPoint»

interface_135

pLLRS

	This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	Arms	Regulations	
or	the	U.S.	Export	Administration	Regulations.	
	

system records activities, scores actions, help produce after-action
reports for review, and helps trainers carry out a training scenario.
Systems at the small end of the spectrum could involve a single
warfighter qualifying with a weapon. Systems at the large end
involve whole brigades on maneuvers, engaging each other with
lasers and wearing laser vests.
In LT2’s PLE factory of Figure 1, the primary shared assets
include software source code, a bill-of-materials (BOM) for each
system being deployed to training facilities around the world, and
extensive maintenance and training documentation. LT2 has to
date accumulated more than $746 million in cost avoidance based
on its product line engineering approach [4]. LT2 employs
Enterprise Architect as its tool of choice to capture the design
models for the systems in the product line and also uses SysML as
its modeling language. LT2 engineers use their models to capture
and convey the designs of the various systems in the product line.

Figure 7 LT2 use case, rendered in SysML with Enterprise

Architect (figure used with permission of General Dynamics)
LT2 engineers focus on use cases, captured as Use Case Diagrams
(Figure 7). The plan is to add variation points to these
representations so that use cases specific to a member of the LT2
product line can be automatically generated by the LT2 PLE
factory. The plan is to also add variation points to the system
logical elements and physical elements such as constituent
assemblies and parts. When General Dynamics deploys a training
system to a site, all of the parts and pieces (computers, cameras,
equipment racks, laser vests, cables, labels, radios, and much
more) arrive in shipping containers. Those shipping containers
have to be packed, and include exactly the components needed by
that training system – no more and no less. So, a critical part of
LT2’s PLE factory is a bill of materials (BoM), and a critical part
of LT2 engineering is the Product Lifecycle Management (PLM)
that manages the BoM as part of the “digital twin” of the system
as it evolves from design through deployment, and on-site
maintenance.

Like all shared assets, the BoM is maintained as a superset. Based
on feature choices that describe the system being deployed, the
configurator produces a BoM subset specific to that system, which
can be used to assemble the collection of physical parts that make
up a system.
LT2’s over-arching vision is a marriage of design with matching
physical implementation; their vision is a vision of MBE
integrated with Product Lifecycle Management (PLM), which is

the realm of parts and manufacturing. Because both realms exist
in a product line environment, Feature-based PLE is being used to
align those two worlds. This vision is taking MBE into the PLM
world of manufacturing and physical system deployment and
maintenance, with PLE making it all work seamlessly in the
context of multiple products.

6. GENERAL MOTORS: SEAMLESS
ENGINEERING
General Motors is one of the world’s largest automotive
manufacturers, producing vehicles in 37 countries. It employs
209,000 people and is currently ranked #8 on the Fortune 500 list.
General Motors’ product line of vehicles has been referred to as
“mega-scale product line engineering,” [3] meaning an extremely
large product set (over 9 million per year in GM’s case) with
extremely complex individual products, and extremely complex
feature variation and interaction in those products.

GM is employing PLE and MBE together to achieve at least three
specific goals, which we will address in turn.

Models to facilitate seamless end-to-end systems engineering:
GM’s primary goal is to achieve a truly integrated systems
engineering activity to enable a seamless and unified systems
engineering approach to automotive manufacturing that combines
the electrical/electronic, software, and hardware realms.

To run the software (up to 10 million lines in some cases), a car
may have dozens of electronic control units (ECUs), distributed
around the vehicle on multiple networks, which leads to
complexity in terms of optimal deployment, or assignment of
functionality (and the software that provides it) to individual
processors.

Thus, the feature variation alluded to above needs to be realized in
software, in electronic control units, in serial data messages
flowing across networks that connect the electronic modules, and
more. GM system engineers see this as a continuum between the
functional and the physical realms, requiring flawless translation
on every vehicle. But vehicle designers do not choose ECUs, data
messages, or software code; rather, they choose features that are
much more customer-facing such as active safety or interior
lighting packages. The goal, then, is to flow feature choices
correctly down to decisions about what units of functionality to
deploy on what ECMs, and have the ECMs operate and
communicate correctly.

Figure 8 shows the levels involved in the feature realm. Primitive
features are grouped into cohesive and coherent feature models,
which in turn are conjoined into models of entire systems and
subsystems, which produce choices from which a vehicle designer
can select. Each layer bundles features at its layer into a much
smaller number of available choices, reducing the complexity
from literally astronomical at the bottom to a space on the order of
hundreds of choices at the top.
This structure is mirrored in the design space. A vehicle’s
modeled functionality is divided into domains (for example,
lighting), which offer features (for example, “guide me to my car”
lighting) that exhibit behaviors. System components (for
example, built-in daytime running lights) exist that are made to
behave according to functions, which are units of feature
behavior. System components are allocated to ECUs, and need to
communicate with system components allocated to other ECUs.

All of this information is modeled using (in GM’s case)
Rhapsody; variation is modeled throughout the levels using

	This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	Arms	Regulations	
or	the	U.S.	Export	Administration	Regulations.	
	

features and feature profiles using Gears. All of the levels of the
model mentioned above exist as supersets with variation points
that Gears uses to configure based on feature choices.

Figure 8 System engineering modeling levels (figured used

with permission of General Motors)
The variation points act, as a group, to produce a consistent flow-
down from features to ECU allocation, based on the selections for
a particular vehicle.

Although the following is a simplification, it describes essentially
the process of combining PLE with MBE: If a feature is not
selected for a vehicle, then the system components to implement
that feature are de-selected. If a system component is de-selected,
then the functions to realize it are de-selected. If a function is de-
selected, then it is not allocated to any ECU, and the serial data
items for that function are not part of the ECU’s repertoire.

Models to facilitate automatic calculation of calibration
parameters: For reasons having to do with high-volume
manufacturing, it is not possible for each vehicle to have its own
customized software to match its chosen feature configuration.
Instead, generic software is pre-loaded onto the various electronic
control units, software that is capable of handling any feature
configuration on the vehicle. The software’s behavior is
determined by a set of calibration parameters, whose values are
loaded into a physical memory block during manufacturing.
Feature-specific code is written to be predicated on the value of
the appropriate calibration parameter: if (calibration for this
feature is true) then (execute the code for this feature).

It takes many thousands of calibration parameters to configure the
software for a vehicle. An error in a calibration parameter will
mean that a feature for a vehicle is turned on, or off,
inappropriately, and these errors can lead to costly maintenance
actions. Calibration parameters are also part of the Rhapsody
design models. So, to the list of ramifications of omitting a
feature from a vehicle, we can add “If a feature is de-selected on a
vehicle, set the corresponding calibration parameter in that
vehicles Cal file to false.”

GM estimates that the value of automatic generation of calibration
parameters, and the reduction in errors from manual work is
measured in hundreds to thousands of man/years per year, worth
tens to hundreds of millions of dollars per year [7].

Models to facilitate performance analysis and network
management: Since the serial data items needed to implement a
piece of functionality are derived, it is now possible to derive a
vehicle-specific data dictionary. Data items that are not needed
are omitted. This enables much more precise architecting of

networks and network topologies. Instead of putting a network on
a vehicle that can handle the maximum possible communication
load of any vehicle, it is now possible to put a network on a
vehicle that can handle the maximum communication load for that
vehicle. This can lead to more economical vehicle architectures.

GM Summary: Overall GM sees this approach as yielding better
consistency, fewer defects, higher quality of data, a reduction of
repetitive work, better connectivity among the various engineers
who own different parts of the models, and a unified language for
all of systems engineering within General Motors. The PLE aspect
is essential. With a product line of a few, or even a few dozen,
members it might be possible (if undesirable) to handle the
models as separate instances. Not so at GM, where the product
line numbers in the millions.

7. CONCLUSIONS
We have shown how a simple and effective way to combine two
powerful engineering paradigms, MBE and PLE, is being used in
practice in two extremely challenging system engineering
industries. The approach is fully supported by off-the-shelf
tooling and automation, all of which is in widespread use today.
The combined paradigm uses the PLE Factory concept of a shared
asset superset with variation points, automatically configured to
produce product-specific instances.

Each company came to MBE+PLE through their own respective
contexts, and with their own specific and quite different goals for
the approach. PLE and MBE have, on their own, each reached
industrial levels of maturity, backed up by robust technologies and
methodologies that work at large scales. We hope to have shown
that MBE and PLE together has now arrived on the scene fully
formed and benefitting from the maturity of each of its parents,
and providing the benefits of both.

8. REFERENCES
[1] BigLever Software, “BigLever Software Gears,”

http://www.biglever.com/solution/product.html
[2] Department of Defense, Directive 5000.59, August 8, 2007,

http://www.dtic.mil/whs/directives/corres/pdf/500059p.pdf
[3] Flores, R., Krueger, C., Clements, P. “Mega-Scale Product

Line Engineering at General Motors,” Proceedings of the
2012 Software Product Line Conference, Salvador Brazil,
August 2012.

[4] General Dynamics, “Training and Simulation,”
https://gdmissionsystems.com/c4isr/training-simulation/

[5] Krueger, C. and Clements, P. “Systems and Software
Product Line Engineering,” Encyclopedia of Software
Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013

[6] National Defense Industrial Association, “Final Report,
Model-Based Engineering Subcommittee,” Feb. 2011,
http://sebokwiki.org/wiki/Final_Report_of_the_Model_Base
d_Engineering_(MBE)_Subcommittee

[7] Wozniak, L., Clements, P. “How Automotive Engineering Is
Taking Product Line Engineering to the Extreme,” Proc.
SPLC 2015, Nashville, 2015.

