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ABSTRACT 
Product line engineering and model based engineering are two 
powerful engineering approaches that each bring significant 
advantages to system engineering projects.  This paper explores 
how three companies – Raytheon, General Dynamics, and General 
Motors – are combining these two paradigms in unique and 
innovative ways in very challenging application domains to 
achieve engineering goals of critical importance to them. 
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1. INTRODUCTION 
Model based engineering is “an approach to engineering that uses 
models as an integral part of the technical baseline that includes 
the requirements, analysis, design, implementation, and 
verification of a capability, system, and/or product throughout the 
acquisition life cycle” [6].  A model, in turn, is “a physical, 
mathematical, or otherwise logical representation of a system, 
unity, phenomenon, or process” [2]. Model based engineering is 
held in contrast to approaches in which informal prose or 
diagrams serve as the basis for the information exchange among 
stakeholders in a systems engineering process. Models, because of 

their physical or mathematical formulation, tend to be less 
ambiguous and more amenable to high-confidence analysis, thus 
reducing errors and re-work in the systems engineering process. 

The purpose of this paper is to discuss the combining model-based 
engineering (MBE) with product line engineering (PLE), and to 
describe ways in which the combination is already in industrial. 
The examples originate with three Fortune 150 companies:  
Raytheon, General Dynamics, and General Motors.  While their 
technical approaches are similar, their goals and results are (we 
hope) interestingly different and together illustrate a broad picture 
of some of the ways that PLE+MBE is being used in industry 
today. 

2. FEATURE-BASED PRODUCT LINE 
ENGINEERING 
All three companies profiled in this paper employ a very specific 
approach to PLE. The approach has often been referred to as 
“second generation PLE” [5] but we will refer to it here as 
“Feature-Based PLE,” to align with a forthcoming ISO standard 
that will describe the approach by that name.   

 
Figure 1 PLE as a factory (figure used with permission of 

BigLever Software) 
In Feature-based PLE, the engineering assets are shared across the 
product line. These shared assets can be whatever artifacts are 
representable digitally. These shared assets are created and 
maintained as supersets, meaning that they contain any content 
needed to support any of the products. A configurator (in this 
paper we use Gears [1]) produces product-specific instances by 
actuating a product — that is, exercising variation points in the 
supersets according to the feature choices for that product. A 
feature is a distinguishing characteristic that sets products in a 
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product line apart from each other. A variation point is a 
specification attached to a piece of content in a shared asset that 
stipulates the feature choices under which that content is needed 
in the product-specific instance of that shared asset. The collection 
of feature choices for a product is called a Bill-of-Features, and is 
drawn from all of the available feature choices for the product 
line, which are captured in a feature catalog. Figure 1illustrates. 

3. COMMON APPROACH FOR MBE AND 
PLE TOGETHER:  MODELS BECOME A 
PLE SHARED ASSET 
The three companies represented use MBE to accomplish specific 
goals for the design and engineering of their respective systems – 
plural.   And therein lies the motivation for combining MBE with 
PLE. In that light, it becomes apparent that the MBE models need 
to efficiently and systematically manage variation.  One model 
won’t do. To support their respective product lines, each 
company’s models need to be able to support product-specific 
model instances, just like their requirements, code, tests, and other 
shared assets do.   

Therefore, each company described turns to MBE to handle the 
modeling chores important to them, and turns to PLE to handle 
the variation inherent in the models that reflects the diversity in 
the products they are building.  All three companies use Feature-
based PLE to configure their models by attaching them as shared 
assets (along with other shared assets) to their respective PLE 
factories, and configure them using the same feature selections 
that drive the configuration of their other shared assets. 

4. RAYTHEON:  INTEGRATED 
AIR/MISSILE DEFENSE 
The Raytheon Company is a technology and innovation company 
specializing in defense, civil government, and cybersecurity 
throughout the world.  They employ 63,000 employees 
worldwide. MBE and PLE are both in use, to varying degrees, 
throughout Raytheon.  We will relate the experience of one 
product area in particular, in the radar domain, where the two are 
being applied together. 

To protect confidentiality we will use a fictitious but 
representative example called GloboShield. GloboShield’s 
mission is to protect a theater from air and missile attack by 
detecting, tracking, identifying, and destroying airborne threats. A 
system includes sensors, displays, planning functions, threat 
evaluation, health and status monitoring, communication with 
friendly systems for information exchange, and more. Customers 
can order GloboShield in different configurations, and with 
different levels of capability.   For example, GloboShield provides 
options for its Threat Assessment capability, which we will use to 
illustrate how model variation is handled.  The customer may  

• Choose or omit the Threat Determination service to identify 
a threat that could be an air-breathing target (ABT) and/or a 
theater ballistic missile (TBM).  

• Choose or omit a Threat Ranking and/or a Threat Warning 
service.   

Figure 2 is a sketch of a system architecture for GloboShield, 
identifying its major subsystems along with some explication 
about each.  (Figure 2 does not tell the whole architectural story, 
of course, but for the purposes of our discussion, we will let 
Figure 2 stand in for the entire range of useful architecture 
documentation.) Each instance of GloboShield will have its own 

system architecture that reflects the product choices outlined 
above as well as many others, but in all cases one that is derived 
from the architecture illustrated in Figure 2. (For the purposes of 
this paper, it is not important to understand the details of the 
“master” or derived architectures.) 

Product architectures are subsets of the master architecture.  For 
example, a product architecture may omit some of the components 
that populate the master architecture (and therefore the 
relationships or “connectors” that tie those components to other 
components).  This typically occurs when those components 
provide a capability that has not been chosen for a product.  A 
product architecture may vary from the master in other ways; for 
example, a component may exist in both the master and a derived 
product architecture, but that component will be of a different 
“flavor” in the product, or bind certain choices about it that are 
available in its master-architecture analog. 

 
Figure 2 GloboShield master architecture view identifying 

major architectural components 
To move from the documentation-centric realm into the model-
based realm, these architectural designs need to be captured in a 
more formal representation. Raytheon, like many systems 
engineering organizations, uses the System Modeling Language 
(SysML) as its preferred language in which to represent system 
architectures.  The master and derived architectures can be 
represented in SysML. Raytheon uses Rhapsody from IBM 
Rational as the modeling tool with which to capture SysML 
models.  In alignment with MBE, these choices enable analysis 
and derivation (for example, code generation) to be brought to 
bear, whereas any utilization of the architectural information 
before was purely manual and fraught with error-prone and labor-
intensive work.  

To treat our architecture models in accordance with the PLE 
Factory model of Figure 1, the systems engineering team 
developed a superset view of the architecture to capture those 
systems that would be variant.  Figure 3 captures the variations 
identified for the structure of the enterprise view. The gear icon on 
some of the blocks (along with the Variation Point stereotype in 
the model for these elements) denotes model elements that are 
variation points – that is, they do not appear in every member of 
the product line. 

In order to identify the variant features, a feature model was 
developed.  Raytheon has chosen the Gears PLE tool and 
framework [1] to serve as its feature modeling tool and the PLE 
Configurator shown in Figure 1. 

The feature model captures distinguishing characteristics that set 
products apart – that is, only those features that represent variation 
are modeled.  The feature model is a hierarchical decision tree that 



	This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	Arms	Regulations	
or	the	U.S.	Export	Administration	Regulations.	
	
 

identifies and defines opportunities for variation; making 
selections in such a decision tree defines a particular product. 

 
Figure 3  GloboShield block definition diagram superset with 

variation 
Figure 4 shows part of the GloboShield feature model. It describes 
the variant features a customer may choose from for a specific 
product.  Features defined in the feature model can be capabilities 
(i.e., functional, operational, presentation, implementation 
techniques, operating systems, and operating platforms) that 
represent variation among products. Some options may be 
dependent on other options and need to be included or cannot be 
combined with other options. These dependencies and constraints 
are defined as assertions and are captured as rules. 

 
Figure 4  Feature model  (excerpt) for threat assessment 

Feature profiles are defined from the feature model by selecting 
the feature options that define a specific product; for instance, a 
feature profile that chooses the Threat Determination option for a 
GloboShield product instance, or another that selects Threat 
Determination, Threat Warning, and Threat Ranking for a 
different GloboShield product instance. Feature choices must be 
mapped to the variation within shared assets, so that the 
configurator can reflect the feature choice in the configuration of 
the shared asset.  This is accomplished by adding variation points 
to the assets.  Figure 5 shows a variation point that has been added 
to the ThreatDetermination block in Rhapsody. The variation 
point logic is written in a logic language that maps to the feature 
declarations.  The logic tells Gears what feature choices or 
combination of feature choices will cause that block to be 
included in the projection, or product-specific instantiation of this 
shared asset. In the Rhapsody model, when Gears produced the 
Threat Determination ABT product configuration (Figure 6), the 

model elements with the gear icon are either highlighted in yellow 
if included, or a red slash if excluded, from the projection.  All 
other model elements not tagged with variation points are 
common and will always be included in the projection. 

 
Figure 5  Rhapsody view of Gears variation points 

 
Figure 6  Threat assessment block diagram after actuation for 

the threat determination ABT product 
A single actuation step will produce not only a block diagram but 
also any other diagrams that have been similarly imbued with 
variation points. The result is a holistic set of models, consistently 
configured to represent the same product instance.  
When the PLE factory produces a product-specific architectural 
model in Rhapsody, we can then carry out all of our MBE-based 
analysis and downstream transformations.  The derivation of the 
product architecture(s) from the master architecture of Figure 2 is 
now fully automated, happens in a few seconds, and is not prone 
to the errors of manual derivation.  Moreover, we have only the 
superset to store, maintain, and update.  The derived architectures 
are not maintained on their own, but merely re-generated when 
the superset changes.  Thus, we have cut the artifacts we need to 
manage and store by 80% (from 5 to 1).   

5. GENERAL DYNAMICS: 
MBE+PLE+PLM 
General Dynamics employs 99,500 people world wide, is listed as 
#88 on the 2016 Fortune 500, and is the world’s fifth largest 
defense contractor. The product line from which this MBE+PLE 
story is taken is Live Training Transformation (LT2), a family of 
training systems developed primarily for the US Army but also 
used by other US military services. 

Each member of the LT2 product line carries out a training 
scenario for one or more warfighters1. Generally speaking, the 
                                                                    
1 “Warfighter” is a generic term for soldier, sailor, airman, or Marine. 
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system records activities, scores actions, help produce after-action 
reports for review, and helps trainers carry out a training scenario.  
Systems at the small end of the spectrum could involve a single 
warfighter qualifying with a weapon.  Systems at the large end 
involve whole brigades on maneuvers, engaging each other with 
lasers and wearing laser vests. 
In LT2’s PLE factory of Figure 1, the primary shared assets 
include software source code, a bill-of-materials (BOM) for each 
system being deployed to training facilities around the world, and 
extensive maintenance and training documentation.  LT2 has to 
date accumulated more than $746 million in cost avoidance based 
on its product line engineering approach [4]. LT2 employs 
Enterprise Architect as its tool of choice to capture the design 
models for the systems in the product line and also uses SysML as 
its modeling language.  LT2 engineers use their models to capture 
and convey the designs of the various systems in the product line. 

 
Figure 7 LT2 use case, rendered in SysML with Enterprise 

Architect (figure used with permission of General Dynamics) 
LT2 engineers focus on use cases, captured as Use Case Diagrams 
(Figure 7). The plan is to add variation points to these 
representations so that use cases specific to a member of the LT2 
product line can be automatically generated by the LT2 PLE 
factory. The plan is to also add variation points to the system 
logical elements and physical elements such as constituent 
assemblies and parts. When General Dynamics deploys a training 
system to a site, all of the parts and pieces (computers, cameras, 
equipment racks, laser vests, cables, labels, radios, and much 
more) arrive in shipping containers.  Those shipping containers 
have to be packed, and include exactly the components needed by 
that training system – no more and no less.   So, a critical part of 
LT2’s PLE factory is a bill of materials (BoM), and a critical part 
of LT2 engineering is the Product Lifecycle Management (PLM) 
that manages the BoM as part of the “digital twin” of the system 
as it evolves from design through deployment, and on-site 
maintenance.  

Like all shared assets, the BoM is maintained as a superset.  Based 
on feature choices that describe the system being deployed, the 
configurator produces a BoM subset specific to that system, which 
can be used to assemble the collection of physical parts that make 
up a system. 
LT2’s over-arching vision is a marriage of design with matching 
physical implementation; their vision is a vision of MBE 
integrated with Product Lifecycle Management (PLM), which is 

the realm of parts and manufacturing.  Because both realms exist 
in a product line environment, Feature-based PLE is being used to 
align those two worlds. This vision is taking MBE into the PLM 
world of manufacturing and physical system deployment and 
maintenance, with PLE making it all work seamlessly in the 
context of multiple products. 

6. GENERAL MOTORS:  SEAMLESS 
ENGINEERING 
General Motors is one of the world’s largest automotive 
manufacturers, producing vehicles in 37 countries. It employs 
209,000 people and is currently ranked #8 on the Fortune 500 list. 
General Motors’ product line of vehicles has been referred to as 
“mega-scale product line engineering,” [3] meaning an extremely 
large product set (over 9 million per year in GM’s case) with 
extremely complex individual products, and extremely complex 
feature variation and interaction in those products. 

GM is employing PLE and MBE together to achieve at least three 
specific goals, which we will address in turn. 

Models to facilitate seamless end-to-end systems engineering:  
GM’s primary goal is to achieve a truly integrated systems 
engineering activity to enable a seamless and unified systems 
engineering approach to automotive manufacturing that combines 
the electrical/electronic, software, and hardware realms.  

To run the software (up to 10 million lines in some cases), a car 
may have dozens of electronic control units (ECUs), distributed 
around the vehicle on multiple networks, which leads to 
complexity in terms of optimal deployment, or assignment of 
functionality (and the software that provides it) to individual 
processors. 

Thus, the feature variation alluded to above needs to be realized in 
software, in electronic control units, in serial data messages 
flowing across networks that connect the electronic modules, and 
more.  GM system engineers see this as a continuum between the 
functional and the physical realms, requiring flawless translation 
on every vehicle.  But vehicle designers do not choose ECUs, data 
messages, or software code; rather, they choose features that are 
much more customer-facing such as active safety or interior 
lighting packages. The goal, then, is to flow feature choices 
correctly down to decisions about what units of functionality to 
deploy on what ECMs, and have the ECMs operate and 
communicate correctly. 

Figure 8 shows the levels involved in the feature realm. Primitive 
features are grouped into cohesive and coherent feature models, 
which in turn are conjoined into models of entire systems and 
subsystems, which produce choices from which a vehicle designer 
can select.  Each layer bundles features at its layer into a much 
smaller number of available choices, reducing the complexity 
from literally astronomical at the bottom to a space on the order of 
hundreds of choices at the top. 
This structure is mirrored in the design space.  A vehicle’s 
modeled functionality is divided into domains (for example, 
lighting), which offer features (for example, “guide me to my car” 
lighting) that exhibit behaviors.  System components (for 
example, built-in daytime running lights) exist that are made to 
behave according to functions, which are units of feature 
behavior. System components are allocated to ECUs, and need to 
communicate with system components allocated to other ECUs. 

All of this information is modeled using (in GM’s case) 
Rhapsody; variation is modeled throughout the levels using 
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features and feature profiles using Gears. All of the levels of the 
model mentioned above exist as supersets with variation points 
that Gears uses to configure based on feature choices. 

 
Figure 8  System engineering modeling levels (figured used 

with permission of General Motors) 
The variation points act, as a group, to produce a consistent flow-
down from features to ECU allocation, based on the selections for 
a particular vehicle.    

Although the following is a simplification, it describes essentially 
the process of combining PLE with MBE:  If a feature is not 
selected for a vehicle, then the system components to implement 
that feature are de-selected.  If a system component is de-selected, 
then the functions to realize it are de-selected.  If a function is de-
selected, then it is not allocated to any ECU, and the serial data 
items for that function are not part of the ECU’s repertoire.  

Models to facilitate automatic calculation of calibration 
parameters:  For reasons having to do with high-volume 
manufacturing, it is not possible for each vehicle to have its own 
customized software to match its chosen feature configuration. 
Instead, generic software is pre-loaded onto the various electronic 
control units, software that is capable of handling any feature 
configuration on the vehicle. The software’s behavior is 
determined by a set of calibration parameters, whose values are 
loaded into a physical memory block during manufacturing. 
Feature-specific code is written to be predicated on the value of 
the appropriate calibration parameter:  if (calibration for this 
feature is true) then (execute the code for this feature). 

It takes many thousands of calibration parameters to configure the 
software for a vehicle.  An error in a calibration parameter will 
mean that a feature for a vehicle is turned on, or off, 
inappropriately, and these errors can lead to costly maintenance 
actions. Calibration parameters are also part of the Rhapsody 
design models.  So, to the list of ramifications of omitting a 
feature from a vehicle, we can add “If a feature is de-selected on a 
vehicle, set the corresponding calibration parameter in that 
vehicles Cal file to false.” 

GM estimates that the value of automatic generation of calibration 
parameters, and the reduction in errors from manual work is 
measured in hundreds to thousands of man/years per year, worth 
tens to hundreds of millions of dollars per year [7]. 

Models to facilitate performance analysis and network 
management: Since the serial data items needed to implement a 
piece of functionality are derived, it is now possible to derive a 
vehicle-specific data dictionary.  Data items that are not needed 
are omitted.  This enables much more precise architecting of 

networks and network topologies.  Instead of putting a network on 
a vehicle that can handle the maximum possible communication 
load of any vehicle, it is now possible to put a network on a 
vehicle that can handle the maximum communication load for that 
vehicle.  This can lead to more economical vehicle architectures. 

GM Summary: Overall GM sees this approach as yielding better 
consistency, fewer defects, higher quality of data, a reduction of 
repetitive work, better connectivity among the various engineers 
who own different parts of the models, and a unified language for 
all of systems engineering within General Motors. The PLE aspect 
is essential.  With a product line of a few, or even a few dozen, 
members it might be possible (if undesirable) to handle the 
models as separate instances.  Not so at GM, where the product 
line numbers in the millions. 

7. CONCLUSIONS 
We have shown how a simple and effective way to combine two 
powerful engineering paradigms, MBE and PLE, is being used in 
practice in two extremely challenging system engineering 
industries. The approach is fully supported by off-the-shelf 
tooling and automation, all of which is in widespread use today.  
The combined paradigm uses the PLE Factory concept of a shared 
asset superset with variation points, automatically configured to 
produce product-specific instances.   

Each company came to MBE+PLE through their own respective 
contexts, and with their own specific and quite different goals for 
the approach.   PLE and MBE have, on their own, each reached 
industrial levels of maturity, backed up by robust technologies and 
methodologies that work at large scales. We hope to have shown 
that MBE and PLE together has now arrived on the scene fully 
formed and benefitting from the maturity of each of its parents, 
and providing the benefits of both. 
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