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ABSTRACT 
General Motors faces probably the most complex Systems and 
Software Product Line Engineering (PLE) challenges ever, in 
terms of product complexity, richness of variation, size of 
organization, and an unforgiving requirement to support over a 
dozen simultaneous development streams all geared towards each 
new model year. To meet this challenge, GM turned to an 
advanced set of explicitly defined product line engineering 
solutions, which have been referred to as Second Generation PLE 
(2GPLE).  This includes reliance on features as the lingua franca 
to express product differences in all phases of the lifecycle, 
deeply nested hierarchical product lines, industrial strength 
automation to provide modeling consistency throughout, and 
more.  This paper explains how 2GPLE is being applied at 
General Motors, and the technical and organizational lessons 
learned so far. 

Categories and Subject Descriptors 
D.2.2 [Design tools and techniques]: product line engineering, 
software product lines, feature modeling, hierarchical product 
lines 

General Terms 
Management, Design, Economics. 

Keywords 
Product line engineering, software product lines, feature 
modeling, feature profiles, bill-of-features, hierarchical product 
lines, variation points, product baselines, product portfolio, 
product configurator 

1. INTRODUCTION 
This is the story of a product line engineering effort under way at 
General Motors.   The product line involves the electronic control 
systems placed aboard vehicles during manufacturing.   These 
control systems includes electrical components (sensors and 
actuators), electronic control units laid out in a given topology 
around the car, wires and data networks to connect the 
components appropriately, and the software that runs it – all 

loaded correctly onto each vehicle.  Like all product line stories, 
this one focuses on a particular set of aspects that set this one 
apart from others. While the effort is very much a work in 
progress, the piloting and roll-out effort is far enough along to 
allow us to confidently describe these aspects of the solution: 

1. How solving this product line engineering problem requires 
every dimension of what has come to be called the second 
generation approach to product line engineering.  The 
dimensions that play the largest role in the GM story include 
(1) consistent and traceable treatment variation points, 
chosen from a very small set of variation mechanisms, in 
artifacts from every phase of the engineering lifecycle, from 
requirements through design and implementation, to 
deployment on hardware, to calibrations; (2) the role of 
features as the way in which variation is expressed 
throughout the product line; and (3) the introduction of 
deeply nested hierarchical product lines and the ways in 
which the product lines that populate the hierarchy 
“interface” with each other and respect the information 
boundaries that correspond to long-established organizational 
structures. 

2. How a very small but consistent set of product line constructs 
are proving to be adequate to provide the necessary 
expressive power for this product line. 

3. How the automation that is required to power the product 
line solution depends not only the its own technical 
capabilities but also on vendor business partnerships that 
allow it to work seamlessly with a variety of life cycle 
engineering tools that store artifacts in proprietary formats – 
artifacts that need to have variation points injected into them.  

These aspects are made compelling because of the unprecedented 
complexity involved in this product line.  If these solutions work 
here, it is unlikely they will be found inadequate anywhere else. 

2. A MEGA-SCALE PRODUCT LINE 
General Motors is the largest automotive manufacturer in the 
world [1].  In 2011 it sold over 9 million vehicles, produced (with 
its partners) in 31 countries around the world.  That works out to 
over 1,000 vehicles rolling off assembly lines every hour.   

The product line we describe is built under the Next Generation 
Tools (NGT) initiative at General Motors. GM introduced NGT to 
tackle the complexity brought on by (among other things) the 
introduction of hybrid and alternative-fuel vehicles and new 
“active safety” features that require intricate and unprecedented 
orchestration among vehicle subsystems. Product line engineering 
is a key ingredient of NGT.  
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General Motors may well represent the most challenging domain 
in all of product line engineering. We characterize it as mega-
scale PLE due to the fact that engineers must deal with multiple 
product line characteristics that measure in the millions although, 
as we will see, even this term’s implied order of magnitude fails 
by a wide margin to do justice to the problem space: 
1. The vehicles are complex.  As a group, GM vehicles 

comprise some 300 engineered subsystems such as brakes, 
exterior lighting, interior lighting, entry controls, and many 
more.  The Chevrolet Volt runs approximately 10 million 
lines of code, which is several million more than either the 
Boeing 787 or the F-35 Joint Strike Fighter [12]. 

 

Figure 1  Chevy Volt: Ten million lines of code, ready to roll 
(© GM Company) 

2. The variation among vehicles is enormous. GM builds 
over 60 models under seven brands and divisions.  The 
vehicles may be internal combustion, electric, or both. 
Customer-visible options include everything from power 
windows to “lane keep assist” (a system to help the car stay 
in the correct highway lane).  These options, and many 
dozens more, fundamentally affect the electronics and 
software aboard the vehicle.   
Legislation, not to mention cultural preferences, in the 150+ 
countries where GM does business also imposes feature 
constraints.  To choose one of many dozens of examples, 
there are complex interactions between the vehicle’s exterior 
lights (low beam headlights, high beam headlights, tail 
lamps, brake lights, parking lights, daytime running lights, 
front fog lamps, rear fog lamps, cornering lamps, reversing 
lamps, and hazard flashers) in terms of which lights are 
allowed, disallowed, or required to come on with which 
others. The “lead me to my car” feature makes lights come 
on or flash when the driver presses a button on the key fob.  
Which lights come on, whether they flash or not, and how 
long they stay on all are specific to the region and (of course) 
what exterior lights are actually on the vehicle. The 
electronics aboard every car has to get that behavior right for 
that car. 
A simple thought experiment helps to grasp the astronomical 
magnitude of the variation involved.  We can think of vehicle 
rolling off an assembly line as the result of making a very 
large set of yes-or-no decisions.  The set of all possible 
vehicles results from all possible combinations of those yes-
or-no choices.  The size of that product space is 2x, where x 
is the number of decisions.  If x>260, then the product space 
comprises more combinations than the number of atoms in 

the observable universe [19].  For GM, x is in the low 
thousands.   (The number of variants that GM actually 
produces is much less than that, obviously – a number in the 
low tens of thousands.) 

3. Feature interaction abounds.  The lighting example above 
illustrates interactions within a subsystem (exterior lighting) 
but other features require complex interactions among 
completely different subsystems. For example, the presence 
of “park assist” (a feature to help park the car) requires the 
presence of a sensor to gauge the car’s position relative to the 
parking space. On some cars this will be a sonar detector, 
while on others it will be a camera.  Park assist also requires 
brakes that accept software control, and some versions of 
park assist require particular versions of steering controls.  
Thus, the presence of a customer-visible feature can affect 
multiple subsystems, requiring communication and 
coordination among the subsystems on the car, and among 
the groups that are responsible for the subsystems involved. 

4. The product line must be in lockstep with current and 
future model years.   GM has to plan their production years 
in advance. Features that won’t be in the showroom for 3-5 
years are already part of today’s engineering.  And the entire 
product line marches in unwavering lockstep with the 
calendar, fixed and unforgiving, which defines each new 
model year.  This means that the product line infrastructure 
must support concurrent engineering streams for each of the 
fixed yearly cadences, as well as concurrent development 
cadences for release cycles scheduled every 6 weeks 
throughout the year.  There may be as many as 15 active, 
concurrent engineering baselines that engineers must 
contribute to and coordinate among. 
The temporal dimension of the problem exhibits 
astronomical complexity as well. Each of the 300 or so GM 
subsystems will typically undergo enhancements or fixes 
within 10 or more cadences within a 2 year period, resulting 
in 10300 possible subsystem version combinations. As with 
the number of feature combinations, this also vastly exceeds 
the 1080 atoms in the observable universe [19]. 

5. Consistency and traceability across the life cycle are 
required.  Each vehicle is the result of an engineering 
process that spans requirements, design, implementation, 
calibration, layout and interconnection of electronic control 
units (ECUs), allocation of software to the ECU network, 
production of a manufacturing bill-of-materials, and testing.  
Each of the artifacts must be consistent with each other, in 
that they must all be accurate with respect to the vehicle to 
which they apply.  Further, that consistency must be 
demonstrable through feature interdependency constraints as 
well as traceability among lifecycle phases.. 

6. The organization is very large.  Ultimately up to 5,000 
engineers will be directly working on artifacts that are part of 
the product line, some in roles newly defined expressly to 
support the PLE effort. 

The emergence of hybrid and alternative fuel vehicles and new 
active safety features, which dramatically increase the amount of 
product line diversity, plus the new economic reality in the 
automotive industry that leaves little margin for technical error, 
drove GM to plan to overhaul its engineering tools and processes.  
The result is the Next Generation Tools (NGT) initiative. 



 

 

3. NGT AND GM’S MARCH TOWARDS 
“CONVERGENCE” 
Product line engineering at its heart is about sharing, and about 
eliminating duplication.  At GM this is called “convergence,” and 
has been an ongoing work in progress for decades. NGT is the 
latest manifestation of a long-standing strategy. It began with the 
merging of branded divisions in 1991, continued with the 
adoption of a common electrical and electronic architecture and 
management of requirements to give features a common look and 
feel in the late 1990s, and grew with the commitment to adopt  the 
AUTOSAR (AUTomotive Open System ARchitecture).  open 
standards for automotive E/E (Electrics/Electronics) architectures 
[2] in the early 2000’s. 

To create a roadmap for this new convergence, GM created the 
Next Generation Tools (NGT) initiative in 2008.  NGT was 
originally intended to answer the question “What common tools 
and processes shall we all adopt to power this convergence?”  GM 
wanted an open tooling solution, with the ability to obtain the 
best-of-class life cycle tooling solutions from different vendors.  
After an extensive search, GM settled on a number of different 
IBM Rational tools, including 

 DOORS for requirements management (precipitating a 
migration from Microsoft Word, GM’s previous choice for 
requirements) 

 Rhapsody for system design and models management 
 RPE (Rational Publishing Engine) for documentation 

production 
 Team Concert for change management and Synergy for 

configuration management 

As GM investigated these and other tools, they recognized that 
AUTOSAR was only one step on the road to a more advanced 
product line engineering capability. As this realization dawned, 
GM recognized that none of the tools they had selected were 
“product-line-aware,” and that they needed a tool to manage 
variation points in their engineering artifacts and help configure 
vehicle-specific engineering products.   For this, they chose Gears 
from BigLever Software, currently in use to power other large-
scale industrial product line engineering efforts [8][10][4] and 
three SPLC Hall of Fame members [17]. 

4. MEANWHILE, PLE EVOLVES 
While the stage was being set at GM for the unfolding of a 
massive product line story, the field of product line engineering 
was not standing still.  Indeed, it was evolving a new set of 
concepts and technology that has been referred to as second 
generation product line engineering (2GPLE) [9]. This 
characterization represents seen-in-practice extensions to an early 
paradigm centered mainly on core asset production and product 
derivation.   

Although generational definitions based on industry trends are 
imprecise, 2GPLE can be said to comprise five aspects.  None of 
these facets of 2GPLE are incompatible with or contradict earlier 
approaches to software product line engineering [13][20][5] – 
indeed, all five are mentioned as possible.  The difference is that 
in 2GPLE they have emerged in a central role, essential to support 
large-scale practice.  The five facets of 2GPLE will be discussed 
in turn. 

4.1 Features as the lingua franca to express 
product differences across the lifecycle 
The concept of “feature” allows a consistent abstraction to be 
employed when making choices from vehicle configuration all the 

way down to the deployment of software components onto an 
electronics architecture.  GM is elevating what they call a bill-of-
features to the role of communication vehicle between business, 
product marketing, and engineering units.  The goal is to use this 
to express and automatically derive content for vehicles in terms 
of desired features and capabilities, rather than describing vehicles 
in terms of its bill-of-materials – that is, its listing of parts and 
pieces.  Although a bill-of-materials will still be needed for 
manufacturing, the vision of GM’s PLE effort is that the bill-of-
materials for a vehicle’s electronics is generated from its bill-of-
features. 

To capture features, here is the set of feature modeling constructs 
(provided by Gears) that GM is using for its product line work. 
They are: 

• Feature declarations are parameters that express the 
diversity in the product line for a system or subsystem. 
Feature declarations typically express the customer-visible 
diversity among the products in a product line.    

Feature declarations have types. When a feature is chosen for 
inclusion in a product, it must be given a value consistent 
with its type. Table 1 shows the feature types supported by 
Gears. 

Table 1 Gears feature types 

Boolean true, false  Enum-
eration 

Select exactly one 
value from sub-
ordinate features. 

Integer, 
Float 

Signed or 
unsigned 
numeric 
value 

 Set 

Select zero or more 
values from 
subordinate 
features. 

String 

Character 
string 
delimited by 
double 
quotes 

 Record 
Select all values 
from subordinate 
features. 

Character 

Single 
character 
delimited by 
single quotes 

 Atom 
Named member/ 
value of a set or 
enumeration. 

 
• Feature assertions describe constraints and 

dependencies among the feature declarations.  Feature 
assertions in Gears express REQUIRES or EXCLUDES 
relations.   They express the constraint that a feature (or 
combination of features), if present, either requires or 
excludes the presence of another feature (or 
combination of features).  For example, an assertion 
could express the need for software-actuated brakes to 
be present whenever the park assist option is on the 
vehicle, or the need for certain switches to be present if 
certain lights are installed. 

• Feature profiles are used to select and assign values to 
the feature declaration parameters for the purpose of 
instantiating a product. A feature profile is associated 
with a product, and reflects the actual choices you 
make:  Two door with sport package but no moon roof; 
or four door with luxury package and moon roof.  The 
values assigned in feature profiles must satisfy the 
constraints and dependencies expressed by the 
assertions in the feature declarations.  

• Assets are the abstraction for systems and software 
artifacts in a production line.  They are the building 
blocks of the products in the product line.  Assets may 



 

 

be requirements, architecture and design documents, 
source code files, calibration sets, test cases, and so 
forth – artifacts from any phase of the development life 
cycle. 

• Variation points encapsulate the variations in the assets 
used to build products.  Feature declarations are mapped 
to these variation points, and a feature profile is mapped 
to the choices made at each variation point when 
building a product. In Gears, a variation point is 
instantiated by one or more variants, one of which will 
“stand in” for the variation point when a feature profile 
is used to build a product.  A variant can “stand in” as is 
(in which case, the variation is accomplished by 
choosing which variant to use), or it can “stand in” after 
being transformed by applying a match-substitution 
pattern expressed in the regular-expression language of 
Perl.   

Figure 2 illustrates how this small set of constructs – a feature 
model composed of feature declarations, feature assertions, and 
feature profiles, plus assets and variation points – give us the 
concept of a production line (the part of the figure inside the red 
box).  Assets are built and maintained on the left; each is endowed 
with one or more variation points (indicated by the gear symbol).  
Feature profiles determine how the assets are instantiated (by 
exercising their variation points) to produce product-ready 
artifacts.  Under this paradigm, organizations become production-
centric rather than product-centric. 

 
Figure 2 A production line.  Feature profiles drive 

instantiation of assets’ variation points, which are exercised 
by the configurator to produce product-ready instances.  

( © BigLever Software, Inc.) 

4.2 Consistent variation management in 
artifacts across the full engineering lifecycle  
It has long been a stated tenet of product line practice that core 
assets include more than software.  For example, the Software 
Engineering Institute’s Framework for Product Line Practice [14] 
states that “architecture, requirements specifications, testing-
related artifacts, budgets, schedules, plans, and production 
infrastructure can all constitute core assets.” However, a complete 
systems and software PLE lifecycle solution requires more than 
just a statement of eligibility.  It requires consistent treatment of 
the artifacts’ variation points under the production infrastructure, 
so that a full set of demonstrably consistent supporting artifacts 
can be systematically generated for each product.  The alternative, 
trying to translate between the different representations and 
characterizations of features and variations across the boundaries 
between stages in the lifecycle, is untenable in large-scale 
practice. 

The artifacts at GM to support this process include requirements, 
system architectures and designs, source code implementation, 
calibration parameters, test cases, and documentation.  Some of 
the documentation is intended for suppliers, who will provide 
some of the necessary software and hardware components.  GM’s 
long-term goal is that all of these are endowed with variation 
points, which can be exercised to correspond to feature choices.   

Common representation of variation points is key to achieving 
traceability from requirements to deployment.  Traceability is of 
great concern for GM.  Every requirement needs to be traceable to 
one or more design elements that satisfy that requirements, and 
each design element should be traceable back to one or more 
requirements that it satisfies. Each design element needs to be 
traceable forward to its implementation and vice versa. Each 
requirement needs to be traceable to one or more test cases that 
validate whether or not the requirement is satisfied in the final 
product.  Managing all of these artifacts consistently, by tying 
their variations to features, is the key to achieving this. 

4.3 CM that maintains assets, not products or 
asset instantiations 
The most important aspect of CM in 2GPLE is that the full 
superset of available PLE assets (and not the individual products 
or systems) are managed under CM.  A new version of a product 
is not derived from a previous version of the same product, but 
from the shared superset of PLE assets themselves.   

Contrast this to product-centric CM, illustrated in Figure 3.  
Suppose a defect is discovered in Product B after it’s been 
deployed, and the defect is traced back to product B’s 
requirements.  The Product B team fixes the defect and re-
deploys.  But Product B’s requirements might have been 
borrowed from Product A’s requirements, and Product N’s code 
might have been borrowed from (defective) product B’s.  By the 
time all of the potential dependencies have been run to ground to 
make sure the defect is eliminated from every place it might occur 
in n products, n(n-1) interactions have occurred, for an O(n2) 
complexity. 

By contrast, using the scheme shown in Figure 2, the requirements 
defect will be fixed in the asset, not the products.  The affected 
products will be re-generated.  This is an O(n) proposition. 

 
Figure 3 A product-centric perspective with O(n2) complexity 

( © BigLever Software, Inc.) 
The configurator in the heart of the production line enables this 
simplified CM scheme and complexity reduction, because it 
makes it practical to re-generate any number of end products 
affected by a change in a shared asset. 



 

 

4.4 Product lines across organizational 
boundaries 
For PLE to work at large organizations, it may be impractical to 
have a single organizational unit tasked with the care and feeding 
of the shared PLE assets [18]. Certainly having one global 
collection of feature declarations for an entire production line is 
impractical. Large feature sets, as we have seen, engender 
intractable and incomprehensible combinatorics. Subsystem 
engineers have no interest or need to see all of the feature 
diversity in other subsystems.  For example, engineers for an 
automotive transmission system do not need to see feature 
abstractions that capture the diversity in the entertainment or GPS 
navigation system. It makes no sense to comingle them. 

It makes much more sense to modularize the feature model in a 
way that corresponds to the organizational structure of the 
enterprise.  Although these structures can change over time [6], 
they make an excellent starting point and let the organization 
begin to adopt PLE using familiar units. 

At GM, a vehicle is composed from a set of integration areas 
(such as safety or human-vehicle integration), which assemble 
combinations of subsystems, which are in turn composed of 
functional elements, which are implemented by compositions of 
software components and calibrations that are loaded onto 
hardware components arranged in one or more physical 
architecture topologies.  At each level in this decomposition – 
which is not necessarily hierarchical – engineers are assigned 
responsibility for managing the artifacts and configurations at that 
level, all of which are imbued with rich and numerous kinds of 
variation.  Assembling a vehicle from the most primitive elements 
would simply be intractable.  By contrast, a vehicle is more like a 
system of systems [11], which is managed as a product-line-of-
product-lines.  At GM the nesting is at least four levels deep.   

Each of these units represents a domain, by which we mean a 
body of knowledge [7].  Integration areas and subsystems are part 
of the fabric of the company.  Building a subsystem for a vehicle, 
or combining subsystems in an integration area, or implementing 
a functional element requires specialized knowledge. In a PLE 
context, that specialized knowledge becomes knowledge about the 
variations that are possible, and the result is a number of product 
lines that each contribute instances to the overall vehicle product 
line.   
In addition to the constructs outlined in Section 4.1, there are 
three more constructs to facilitate the interfacing and coordination 
between levels in the hierarchical product line:  mixins, matrices, 
and imported production lines.   

1. Mixins. Although feature declarations may fall cleanly into 
the realm of one asset or another, there are many cases where 
a feature declaration applies to two or more assets.  For 
example, the automotive platform (Buick Regal?  Chevy 
Cruze?  Cadillac CTS?) and the region for which the vehicle 
is being marketed (North America?  Brazil?  China?) 
constitute features that determine how an asset should be 
configured at many levels:  Integration area, subsystem, 
functional element, component.  Rather than duplicating the 
same feature declaration in multiple assets, a mixin allows 
creation of a feature declaration in one place to "mix it into" 
the feature declarations of multiple assets, by reference.  

Mixins are more than a convenience to avoid duplicative 
feature declarations. They also encapsulate, in a single 
location, the feature profiles built from the feature 
declarations. Having a single location for the feature profiles 

prevents inconsistencies when composing assets to create a 
complete system. 

2. Matrices.  A production line is the “virtual factory” that 
knows how to build products by configuring assets in 
accordance with selected feature profiles.  To build a 
product, you need to tell the configurator what feature profile 
to use for each asset and each mixin in the production line.  
A matrix is a table showing the choices to build a complete 
and consistent product.  Each row specifies one product.  
Each column specifies a choice of feature profile for a mixin 
or an asset. 
A complete product instance is “actuated” by actuating every 
asset and nested production line column that has an entry for 
that product. Each asset and nested production line is 
actuated according to its cell value in the row. If an asset 
imports a mixin, the mixin feature profile to be used is 
determined by its cell value in that row. 

Some products may not need all of the assets. For example, 
low-end products in a production line may not include 
"luxury" assets that are aimed at high-end products. Each 
matrix allows you to include or exclude individual mixins 
and assets to accommodate such product diversity. 

 
Figure 4 A Gears matrix, with three rows for three products.  
The yellow columns show feature profile choices for mixins; 

the blue columns show feature profile choices for assets. 
3. Imported production lines.  Gears allows you to create a 

hierarchy of production lines by nesting one production line 
into another production line. In order to use a production line 
as a nested production line, it must first be imported. An 
imported production line will be added as a column in the 
matrices for the importing production line, just like an asset 
or mixin. For example, engineers at GM have defined a 
production line for the Safety integration area.  In order to 
provide a Safety package to a vehicle, the Safety production 
line must include specifically configured subsystems from a 
number of subsystems (such as Body and Active Safety), 
which are their own production lines.  A subsystem 
production line, in turn, can import production lines 
corresponding to functional elements, and so forth.    

4.5 Industrial-strength automation 
The last ingredient in 2GPLE is a configurator employed to 
maintain configurations, and translate feature profiles into assets 
with their variation points exercised in prescribed ways.  The 
tooling needs to be able to support the construction and 
management of feature models (including feature declarations, 
assertions, and profiles), assets and their variation points, support 
hierarchical production lines, and map from feature choices to 
asset instances (this is the job of the matrices).  Further, it needs to 
either provide version control for the models and artifacts or (even 
better) work seamlessly on top of the user’s own choice of change 
management system. 

A major requirement for the tooling is that it supports the 
specification and selection of variation in assets and artifacts from 
across the entire spectrum of the product lifecycle.  This means 
that the tool will have to support variation in, for example, 
DOORS requirements modules, Microsoft Word documents and 



 

 

Excel spreadsheets, build files for Make or Ant, Rhapsody UML 
models, and many more.  

There are fundamentally three ways to achieve variation in an 
asset, depending on what you know about the digital 
representation of the associated artifact: 
• The representation of the artifact is proprietary and closed, or 

editors for it are not available or are impractical.  For 
example, if our products include a picture that is different 
from product to product, some of our artifacts may be GIF or 
JPG files. To achieve variation, the variation point can 
simply choose from a selection of variants, using each one as 
is, as opposed to trying to change the picture by editing the 
image stored in a one-size-fits-all picture file. 

• The representation of the artifact is “open,” so that you can 
change it using an available open-market tool.  For example, 
artifacts stored as simple text files may be transformed by 
simple word or line substitution.   Artifacts that are Microsoft 
Word documents stored in Office Open XML format can be 
transformed by third-party tools.  In this case, the variation 
point operates by transforming a single variant by 
transforming it appropriately for each product being built. 

• The representation of the artifact is proprietary, but the 
owning organization offers a business relationship to allow 
your tool to edit their artifacts.  Suppose your requirements 
are stored in DOORS, using hundreds and hundreds of 
DOORS requirements objects.  The representation of those 
objects is proprietary, but using the strategy in the first bullet 
is out of the question:  Swapping in and out whole 
requirements documents or databases that each differ by just 
a little bit is untenable.  It would be much better to write a 
piece of software that can insert variation points throughout 
the DOORS representation of a body of requirements. That 
requires an arrangement with the vendor (IBM Rational in 
this case) to open up their representation. 

Figure 5 shows how Gears supports various lifecycle artifacts 
maintained under the proprietary auspices of various tools.  In that 
figure, a bridge is a piece of software that “knows” the other-tool 
representation, and presents a “product-line-aware” user interface 
for that tool that allows product line engineers to insert variation 
points in the artifacts maintained by that tool. 

 
Figure 5 Gears and its bridges to other lifecycle tools  

( © BigLever Software, Inc.) 
First-generation approaches always discussed the need for 
automation; second-generation approaches require it.  Further, 
they don’t just require technical proficiency from the tool but 
interface relationships to lifecycle tools and their providers. 

5. GM’S APPROACH FOR MEGA-SCALE 
PLE 
This section describes in greater detail how GM has adopted 
2GPLE as their technical roadmap for the future.   

5.1 GM’s architectural decomposition 
GM’s architectural strategy plays a key role in how it is rolling 
out PLE.  The strategy is one of logical decomposition as a way to 
gain control over the complexity of building a vehicle’s 
electronics, and a way to allot the thousands of engineers into 
organizational units with clearly scoped roles and responsibilities. 

• Functional architecture: First, a vehicle consists of a 
number of domains.  These are “containers” for capturing the 
requirements necessary to describe the electronics terms 
applicable to an entire vehicle.  Domains define areas of 
related functionality.  For example, Powertrain is a domain, 
as is HVAC (heating, ventilation, and air conditioning).   

Orthogonal to domains are integration areas.  Integration 
areas can be thought of knowledge areas for satisfying high-
level stakeholder requirements for vehicles. Requirements 
here span domains.  For example, Noise and Vibration is an 
integration area; it “touches” any domain that can contribute 
noise or vibration to the occupants’ driving experience:  
Powertrain, Body, Chassis, HVAC, and more. 

GM refers to integration areas and domains together as its 
functional architecture.  The functional architecture provides 
the over-arching structure to host the hierarchical PLE 
models.  Each domain or integration area team will build the 
PLE models for their area of concern in corresponding part 
of the functional architecture hierarchy.  Figure 6 illustrates. 

 
 

 
 

Figure 6 Tool view of GM’s Functional Architecture, showing 
some of the integration areas and domains 

• Implementation architecture. Domains comprise 
subsystems.  Subsystems represent physical systems on 
vehicles.  There are subsystems for brakes, external lighting, 
internal lighting, entry and egress, and many more.  
Subsystems have their own requirements, which must permit 
the subsystems to play their proper role in the domains and 
(in turn) integration areas that need them.   Subsystem 
designers in turn decompose their subsystems into functions, 
and functions into functional elements, and write 
requirements for each. Components are units of 
implementation that satisfy the requirements for functions 
and functional elements.  Components are arranged in a 
decomposition hierarchy; leaf nodes are components; higher 
nodes (which are just aggregations of their descendants in the 
tree) are called compositions.   Components may be software 
components or hardware components, depending on how the 
functional elements are satisfied.  GM calls this component 



 

 

structure (with components mapped to the functional 
elements they satisfy) its implementation architecture. 

• Deployment architecture. Next, the components have to be 
assigned a place in the onboard electronic architecture 
topology.  Software components need to be assigned to an 
electronic control unit (ECU), and hardware components 
have to be assigned a spot in the topology.  The selection of a 
topology from a small number available, the assignment of 
ECUs to spots in the topology, and the assignment of 
software to ECUs all constitute what GM calls its 
deployment architecture. 

• Vehicle application architecture.  Finally, the components 
need to be laid out on a vehicle.  This architecture determines 
where the ECUs are stationed, and the type, position, and 
routing of the wire harnesses to connect the sensors, 
actuators, and ECUs. 

These architectures – functional, implementation, deployment, 
and vehicle application – institutionalize and add structure to 
concepts that are deeply ingrained in the organizational and 
technical fabric at GM. For instance, there are centers of deep 
expertise in brakes and lighting and keyed/keyless entry systems 
and dozens of other domains. As part of PLE adoption, these 
centers are not going to be discarded in favor of a massive re-
organization involving the re-orientation, re-assignment, and re-
training of some 4000-5000 engineers.  

5.2 Roles 
GM’s embrace of 2GPLE has led to the creation of a few new and 
refined engineering roles that have come about as a direct result of 
piloting their hierarchical product line.  Figure 7 sketches the 
major PLE roles and their broad responsibilities vis-a-vis 
maintaining the PLE models and artifacts.  This section will 
highlight a few of those. 

 
Figure 7 Product line engineering roles at GM 

5.2.1 FEATURE OWNER 
Feature owners take ownership of GM features (customer-visible 
features such as cruise control or lane keep assist or hundreds of 
others that are visible and bring value to car owners).   

These features are, in a sense, abstractions.  They only become 
tangible when realized by concrete artifacts:  requirements, 
functions, software components, electronic control units, and 
wiring.  In GM’s PLE environment, each of those artifacts will 
also embody variation.  It is the feature owner’s job to make sure 
that all of those artifacts in “supporting roles” are adequate and 
correctly provide the feature to GM’s customers. 
A feature owner is the main technical contact to external teams 
who need to know about the feature from the point of view of 

assembling a vehicle from this and other features. This engineer is 
the recognized expert for the functional area regarding the 
feature’s required variants, the system constraints it imposes, and 
how it integrates onto a vehicle platform. 

A feature owner is also responsible for modeling the feature and 
its variations in Gears. 

5.2.2 FUNCTIONAL ARCHITECT 
This engineer owns a specific area of the functional architecture 
and as such establishes ownership and boundaries between system 
level assets.  Together, the functional architects maintain the 
functional architecture taxonomy introduced above.  

With the advent of the NGT PLE effort, functional architects have 
taken on a new and critical role:  Together, they are the keepers 
and centralized owners of all of the PLE models.   Their job is to 
ensure that the PLE models produced inside their assigned area by 
feature owners, asset owners, and others are consistent, fit 
together, and represent best PLE practice. 
Functional architects are each assigned a domain, which will 
involve several subsystems.  As PLE practices are introduced into 
each domain, functional architects might actually build the PLE 
models, working with feature owners.  Under this scheme, the 
feature owners remain the subject matter experts about their 
features; the functional architects translate (or help the feature 
owners translate) that knowledge into well-structured and 
consistent PLE models.   

5.2.3 PRODUCT LINE INTEGRATION ENGINEER 
This is another new role at GM, brought about by PLE.  This 
engineer collaborates with Vehicle Product Teams in the selection 
of a ‘bill-of-features’ for a vehicle being planned.  The product 
line integration engineer also collaborates with the feature owners 
in the identification of the top-level subsystem production line 
‘products’ that will be offered up to vehicles.  The vehicle team 
for a vehicle will need the services and advice of a team of 
product line integration engineers, who together will put together 
the bill-of-features for that vehicle’s electronics system. When the 
bill-of-features for a vehicle is created, the product line integration 
engineers will be at the table. 

For example, the vehicle team for the Buick Verano wants to 
understand what kind of climate control options they can offer 
with the car (or, to put it another way, what climate control 
features are eligible for the Verano’s bill-of-features, and what the 
downstream implications are of each).  The product line 
integration engineer responsible for heating, ventilation, and air 
conditioning (HVAC) systems will offer up various automatic and 
manual climate control systems.  If a vehicle might one day be 
powered by hybrid or next-generation energy and propulsion 
systems, this might mandate another kind of HVAC system. 

The vehicle teams aren’t interested in the details of the features’ 
implementations, but only in how the features will appear to the 
customer and how they interact with each other.   The product line 
integration engineers, then, manage subsystem “products” that are 
exposed at the vehicle and bill-of-features level. 

5.2.4 ASSET OWNER 
The remaining roles in Figure 7 are asset owners.  These 
engineers manage various kinds of assets across their life cycle, 
and establish variation points in the assets.    

A requirements engineer is one kind of asset owner.  Their 
responsibilities include migrating requirements from legacy 
requirements assets (mostly Word documents) into DOORS and, 



 

 

along the way, imbuing those requirements with variation points 
that support features. 

Asset owners, including requirements engineers, are responsible 
for modeling the features that their assets make available to the 
consumers of those assets, and the variations in those features.  
These features are often strongly suggested, if not identified 
outright, in existing technical specifications. Thus, feature 
creation is more of an identification and extraction process, as 
opposed to an invention process.  This helps make things go more 
smoothly and predictably. 

5.3 Organizational adoption 
Launching and institutionalizing [16] this approach at GM has 
required significant investment over the last two years or more, 
and that investment is ongoing. There has been a group of 
champions and advocates of the PLE approach throughout the 
effort.  Early on, they sponsored a two-week workshop to show 
how the approach (using Gears in concert with DOORS) could 
tame the requirements for a major subsystem, with variations 
clearly identified and managed.  This pilot effort produced more 
strong advocates, and steered GM towards their current tooling 
approach.   

After that followed a steady series of workshops and technical 
meetings with senior engineers to work out how to apply the 
concepts at GM; the eventual results of these meetings include the 
architectures and roles described above, plus a vision of how 
features could be used across all of the architectures to describe 
variation.  All the while, the champions practiced internal 
evangelizing, advocating the approach to management and 
engineers alike. One-day requirements workshops were held with 
subsystem owners to duplicate the results of the first two-week 
workshop.   

The latter part of 2011 saw the launch of a series of some two 
dozen Bill-of-Features Workshops. These workshops bring 
together a small group of feature owners and subsystem experts in 
a particular area – for example, interior lighting. They spend a day 
learning the PLE approach and then actually using Gears to model 
the features in their domain.  An important goal is to have 
participants experience the “PLE epiphany,” when they see how 
2GPLE and the NGT tool suite will help them do their jobs better. 
At the start of 2012, after two years of establishing buy-in, GM 
launched a series of training courses.  The course series kicks off 
with a short introduction to PLE at GM, and continues with one-
day classroom courses in each of the tools and how they will be 
used.  In concert with the training are the establishment of 
resources to help engineers once they go back to their desks:  
Discussion boards, FAQ lists, help desks, and the like. 

In a PLE undertaking of this magnitude and complexity, it is 
unreasonable to expect that the engineering will be formulaic and 
without incident. Questions and issues are being captured and 
their answers stored in a “GM PLE Cookbook,” which will 
include a set of patterns and anti-patterns for good practice, a list 
of FAQs (including those above), and a set of naming conventions 
for product line objects shared across organizations.  This will 
represents a trove of practical knowledge not usually divulged in 
the product line literature, as well as another aid to 
institutionalization at GM. 

5.4 What is the end game? 
One of GM’s senior electronics engineers characterizes the 
electronics division’s job this way:   “We build silver boxes,” he 

said, “load software in them, and wire them together.”  If they can 
do that correctly for every vehicle they build, their job is done. 

Whatever PLE and NGT can do to help achieve that purpose is a 
win for GM.   The long-term vision is to create a bill-of-features 
for a vehicle (which manifests as a vehicle-level feature profile in 
Gears) and automatically derive as much as feasible of the bill-of-
materials for that vehicle, including requirements, designs, 
models, software, calibration data, tests, documentation, 
allocation of software to hardware, wiring diagrams, and so forth.  
That vision is years away from being achieved. 

However, short of that, there are some intermediate steps that GM 
is working towards. Examples include  

• migrating all requirements to incorporate Gears 
variation points that formalize feature-based variations 
in the system, subsystem, and component requirements, 

• generating calibration files and values that will need to 
be loaded onto the electronics modules, or  

• given a set of features on a car and the components that 
need to be onboard to support those features, generating 
a list of all of the digital signals that the serial networks 
will have to accommodate.   

Longer-term goals include calculating certain additive non-
functional properties of the electronics, such as weight or 
generated heat or cost. 

Even short of this capability, GM is already getting value out of 
their PLE efforts even before they have started producing 
instantiated engineering artifacts.  Just defining an internally 
consistent vehicle with consistent versions of subsystems, 
functional elements, components, and hardware allocations 
represents a very big step in managing the complexity at hand.  To 
be able to do this in an end-to-end fashion under the auspices of 
fully interoperating tool suite is a capability not available at GM 
before now.  The automation – in this case, Gears – can do a 
semantic check on the feature model and report anomalies, such 
as the fact that this vehicle is supposed to support the lane-keep-
assist feature but the instrument cluster chosen for it doesn’t have 
the correct display for that feature, or the chosen physical 
architecture topology cannot support the serial data 
communication required.   

6. EXAMPLE: DAYTIME RUNNING 
LIGHTS 
We conclude by illustrating some of the points in this paper 
through an example, which necessarily must be a small one.  A 
daytime running light (DRL) is a “lighting device on the front of a 
roadgoing motor vehicle, installed in pairs, automatically 
switched on when the vehicle is moving forward, emitting white, 
yellow, or amber light to increase the conspicuity of the vehicle 
during daylight conditions” [21].   

6.1 DRL Requirements 
DRLs are considered a feature at GM; they’re certainly visible to 
the user.  But not all cars have them. DRLs are required 
equipment in Canada, Norway, and Sweden, prohibited in Japan 
and China and optional in the United States, Europe, Australia, 
and the rest of the world.  (Region of sale turns out to be a major 
discriminator among features, permitting or precluding a plethora 
of other features.) 

On vehicles that have them, DRLs can be “implemented” by 
lamps dedicated to that purpose, or by front turn signal lamps, 
reduced intensity low beam headlamps, full intensity low beam 



 

 

headlamps, parking lamps, or a combination of parking lamps and 
dedicated lamps. 

Just as there are many ways to effect DRLs, there are many 
choices for how to turn them on and off (including none at all, 
leaving it up to the car to do so automatically).  There is a thicket 
of requirements concerning when DRLs may, must, and may not 
be on.  For example, in Europe DRLs must switch off 
automatically when the front fog lamps (if the car has front fog 
lamps) or headlamps are switched on, except when the headlamps 
are “used to give intermittent luminous warnings at short 
intervals” – that is, flashed.   

These and other impinging factors consume page after page in the 
requirements document for the exterior lighting subsystem, of 
which DRLs are a member.   These requirements are rife with 
information about what requirements apply under what 
conditions, and be used to identify variations in the DRL feature. 

Besides being a feature by themselves, DRLs play a part in other 
features as well.  Some realizations of the “Lead me to my car” 
feature flash the DRLs when the key fob is pressed.  Police 
vehicles have turn-everything-on features, which include 
dedicated DRLs if the car is so equipped.  Cornering lamps, 
another feature, can only come on under certain conditions, and 
affect DRLs if they share output devices. 

6.2 Modeling DRLs  
The feature owner for DRLs is responsible for understanding how 
the DRL feature is realized, the variations it includes, and any 
variant capabilities required because of its appearance in other 
features. 

Figure 8 shows a preliminary feature model for DRLs.  The 
feature model captures the output type (what lamps on the vehicle 
can be used), if and how DRLs can be disabled, and how DRLs 
are integrated with the car’s headlamp controls turn signals, 
respectively.   

 
Figure 8 Feature model for daytime running lights 

Figure 9 shows how the output type sub-feature is expanded to 
take into account all the possibilities.  The output type is modeled 
as a set; a vehicle can have any number of ways of realizing the 
DRL feature, or none at all.   

 
Figure 9 Expansion of the OutputType feature of DRLs 

However, if a vehicle realizes the DRL feature with low-intensity 
headlamps, then it cannot realize it with high-intensity headlamps 
as well, and vice versa.  An assertion captures this: 

NOT	
  DRL_Algo.DRL_OutputType	
  >=	
  {ReducedIntLBHeadLamps,	
  
FullIntLBHeadLamps}	
  

This says that the OutputType set cannot include both of the 
indicated values; in Gears, the symbol “>=” when used in an 
expression involving sets means “is a superset of.” 

The DRL feature owner builds these feature models in Gears, 
under the conventions and standards developed by the functional 
architects, and in particular the functional architect for the exterior 
lighting domain.  He or she will also build a matrix for the DRL 
feature model that specifies a small number of flavors of the DRL 
feature that can be made available to PLIE’s working to assemble 
vehicles from features. 

Simultaneously, requirements engineers who own the 
requirements for this feature work to turn the DRL requirements 
into a Gears asset, with variation points that (when exercised) 
produce requirements that correspond to the requirements needed 
for each case. 

6.3 DRLs and deployment 
Those responsible for choosing a deployment architecture are 
another kind of asset owner; their asset is the set of ECUs needed 
for the features on board, and the variation points they can provide 
based on features  and feature combinations chosen.  These 
variation points include basic network topology (currently two are 
available; more may be added), how many ECUs will populate a 
topology, what the choice of ECU hardware will be, and the 
allocation of software components to each ECU. 

6.4 DRLs and other features 
Feature owners for other features that interact with DRLs (such as 
the lead-me-to-my-car feature owner) will need to reference DRLs 
in their feature models and profiles.  They will coordinate with the 
DRL feature owner, under the auspices of the functional architects 
for the including domain or domains, to make sure that the DRL 
feature can be referenced, by importing the DRL domain-level 
mixin into their domain production line. 

Other domains than exterior lighting will need the same ways to 
refer to DRL in their feature models.  For instance, the switches 
that turn DRLs on and off are part of the Body domain, whereas 
any indication that DRLs are on are part of the Displays domain. 

6.5 DRLs and the vehicle 
Finally, those defining a vehicle type and the myriad of features 
combinations that GM wishes to offer with it, can do so by 
importing all of the domains’ and integration areas’ production 
lines, adding the highest layer to the product line hierarchy.  They 
will also define a matrix of “products” for each vehicle, defining 
combinations of features in concert with each other. 

7. CONCLUSIONS 
The guiding PLE vision at GM is the ability to engineer vehicles – 
across the full lifecycle – according to a “bill-of-features” rather 
than the traditional “bill-of-materials.”  Although still very much a 
work in progress, the GM experience has already revealed a 
number of lessons about mega-scale product line engineering.   

First, the product line experience at General Motors can be seen as 
intensively applying aspects of what has been called Second 
Generation Product Line Engineering.   This new perspective 
brings the following ideas, which previous approaches always 
allowed but never stressed, to the forefront:  

• A focus on features as the “lingua franca” of variation and 
product selection; the “bill-of-features” replaces the “bill-of-
materials” as the key engineering artifact for product 
derivation. 



 

 

• Treatment of artifacts across the entire lifecycle completely 
consistently with each other, and consistently with the 
software, as first-class components of the product line and 
the derived products 

• An emphasis on high-quality automation at the center of a 
production line, to quickly turn a bill-of-features into a set of 
instantiated lifecycle assets  

• A CM and PLE approach geared to multi-baseline multi-
product management in a way to reduce the order of 
complexity from O(n2) to O(n). 

• Taking multi-organizational management in stride, by 
providing feature model concepts such as mixins and 
imported (hierarchical) production lines, to reflect the 
structure of engineering activities and domain knowledge 
present in an ultra-large organization. 

Second, the GM experience also validates a small set of consistent 
concepts is sufficient to model product lines of inordinate 
complexity. Features (declarations, types, assertions, and 
profiles), assets (that embody features, as well as variation points), 
mixins, and matrices constitute a production line, the “factory” 
that turns feature choices into asset instances.  Allowing 
production lines to import other production lines gives us 
unlimited hierarchy, which can map to any organizational 
structure in which specialized bodies of knowledge are 
encapsulated throughout, no matter how many levels deep. 

Third, one of the most important aspects of PLE and GM is the 
application of consistent variation management in artifacts from 
all across the lifecycle (the second bullet above), artifacts that are 
currently maintained using other lifecycle tools.  In order to 
accomplish this, the automation engine has to embody business 
partnerships with important tool vendors.   

Future work involves continuing the march towards the ultimate 
“end game” described in Section 5.4:  Generating a complete bill-
of-materials for a vehicle by starting with its bill-of-features.  
Ultimately, GM may investigate merging PLE with PLM (product 
lifecycle management), which is the technology used in vehicle 
manufacturing.  That would represent a convergence with 
repercussions across the entire manufacturing industry. 
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