

Mega-Scale Product Line Engineering at General Motors

Rick Flores
General Motors

30003 Van Dyke Ave
Warren MI 48093
+1 248 207-3494

rick.r.flores@gm.com

Charles Krueger
BigLever Software

10500 Laurel Hill Cove
Austin, Texas 78730 USA

+1 512 426 2227

ckrueger@biglever.com

Paul Clements
BigLever Software

10500 Laurel Hill Cove
Austin, Texas 78730 USA

+1 512 994 9433

pclements@biglever.com

ABSTRACT
General Motors faces probably the most complex Systems and
Software Product Line Engineering (PLE) challenges ever, in
terms of product complexity, richness of variation, size of
organization, and an unforgiving requirement to support over a
dozen simultaneous development streams all geared towards each
new model year. To meet this challenge, GM turned to an
advanced set of explicitly defined product line engineering
solutions, which have been referred to as Second Generation PLE
(2GPLE). This includes reliance on features as the lingua franca
to express product differences in all phases of the lifecycle,
deeply nested hierarchical product lines, industrial strength
automation to provide modeling consistency throughout, and
more. This paper explains how 2GPLE is being applied at
General Motors, and the technical and organizational lessons
learned so far.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line engineering,
software product lines, feature modeling, hierarchical product
lines

General Terms
Management, Design, Economics.

Keywords
Product line engineering, software product lines, feature
modeling, feature profiles, bill-of-features, hierarchical product
lines, variation points, product baselines, product portfolio,
product configurator

1. INTRODUCTION
This is the story of a product line engineering effort under way at
General Motors. The product line involves the electronic control
systems placed aboard vehicles during manufacturing. These
control systems includes electrical components (sensors and
actuators), electronic control units laid out in a given topology
around the car, wires and data networks to connect the
components appropriately, and the software that runs it – all

loaded correctly onto each vehicle. Like all product line stories,
this one focuses on a particular set of aspects that set this one
apart from others. While the effort is very much a work in
progress, the piloting and roll-out effort is far enough along to
allow us to confidently describe these aspects of the solution:

1. How solving this product line engineering problem requires
every dimension of what has come to be called the second
generation approach to product line engineering. The
dimensions that play the largest role in the GM story include
(1) consistent and traceable treatment variation points,
chosen from a very small set of variation mechanisms, in
artifacts from every phase of the engineering lifecycle, from
requirements through design and implementation, to
deployment on hardware, to calibrations; (2) the role of
features as the way in which variation is expressed
throughout the product line; and (3) the introduction of
deeply nested hierarchical product lines and the ways in
which the product lines that populate the hierarchy
“interface” with each other and respect the information
boundaries that correspond to long-established organizational
structures.

2. How a very small but consistent set of product line constructs
are proving to be adequate to provide the necessary
expressive power for this product line.

3. How the automation that is required to power the product
line solution depends not only the its own technical
capabilities but also on vendor business partnerships that
allow it to work seamlessly with a variety of life cycle
engineering tools that store artifacts in proprietary formats –
artifacts that need to have variation points injected into them.

These aspects are made compelling because of the unprecedented
complexity involved in this product line. If these solutions work
here, it is unlikely they will be found inadequate anywhere else.

2. A MEGA-SCALE PRODUCT LINE
General Motors is the largest automotive manufacturer in the
world [1]. In 2011 it sold over 9 million vehicles, produced (with
its partners) in 31 countries around the world. That works out to
over 1,000 vehicles rolling off assembly lines every hour.

The product line we describe is built under the Next Generation
Tools (NGT) initiative at General Motors. GM introduced NGT to
tackle the complexity brought on by (among other things) the
introduction of hybrid and alternative-fuel vehicles and new
“active safety” features that require intricate and unprecedented
orchestration among vehicle subsystems. Product line engineering
is a key ingredient of NGT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SPLC '12, September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1094-9/12/09…$15.00.

2012 Software Product Line Conference
Best Paper Award in Industrial Track

General Motors may well represent the most challenging domain
in all of product line engineering. We characterize it as mega-
scale PLE due to the fact that engineers must deal with multiple
product line characteristics that measure in the millions although,
as we will see, even this term’s implied order of magnitude fails
by a wide margin to do justice to the problem space:
1. The vehicles are complex. As a group, GM vehicles

comprise some 300 engineered subsystems such as brakes,
exterior lighting, interior lighting, entry controls, and many
more. The Chevrolet Volt runs approximately 10 million
lines of code, which is several million more than either the
Boeing 787 or the F-35 Joint Strike Fighter [12].

Figure 1 Chevy Volt: Ten million lines of code, ready to roll
(© GM Company)

2. The variation among vehicles is enormous. GM builds
over 60 models under seven brands and divisions. The
vehicles may be internal combustion, electric, or both.
Customer-visible options include everything from power
windows to “lane keep assist” (a system to help the car stay
in the correct highway lane). These options, and many
dozens more, fundamentally affect the electronics and
software aboard the vehicle.
Legislation, not to mention cultural preferences, in the 150+
countries where GM does business also imposes feature
constraints. To choose one of many dozens of examples,
there are complex interactions between the vehicle’s exterior
lights (low beam headlights, high beam headlights, tail
lamps, brake lights, parking lights, daytime running lights,
front fog lamps, rear fog lamps, cornering lamps, reversing
lamps, and hazard flashers) in terms of which lights are
allowed, disallowed, or required to come on with which
others. The “lead me to my car” feature makes lights come
on or flash when the driver presses a button on the key fob.
Which lights come on, whether they flash or not, and how
long they stay on all are specific to the region and (of course)
what exterior lights are actually on the vehicle. The
electronics aboard every car has to get that behavior right for
that car.
A simple thought experiment helps to grasp the astronomical
magnitude of the variation involved. We can think of vehicle
rolling off an assembly line as the result of making a very
large set of yes-or-no decisions. The set of all possible
vehicles results from all possible combinations of those yes-
or-no choices. The size of that product space is 2x, where x
is the number of decisions. If x>260, then the product space
comprises more combinations than the number of atoms in

the observable universe [19]. For GM, x is in the low
thousands. (The number of variants that GM actually
produces is much less than that, obviously – a number in the
low tens of thousands.)

3. Feature interaction abounds. The lighting example above
illustrates interactions within a subsystem (exterior lighting)
but other features require complex interactions among
completely different subsystems. For example, the presence
of “park assist” (a feature to help park the car) requires the
presence of a sensor to gauge the car’s position relative to the
parking space. On some cars this will be a sonar detector,
while on others it will be a camera. Park assist also requires
brakes that accept software control, and some versions of
park assist require particular versions of steering controls.
Thus, the presence of a customer-visible feature can affect
multiple subsystems, requiring communication and
coordination among the subsystems on the car, and among
the groups that are responsible for the subsystems involved.

4. The product line must be in lockstep with current and
future model years. GM has to plan their production years
in advance. Features that won’t be in the showroom for 3-5
years are already part of today’s engineering. And the entire
product line marches in unwavering lockstep with the
calendar, fixed and unforgiving, which defines each new
model year. This means that the product line infrastructure
must support concurrent engineering streams for each of the
fixed yearly cadences, as well as concurrent development
cadences for release cycles scheduled every 6 weeks
throughout the year. There may be as many as 15 active,
concurrent engineering baselines that engineers must
contribute to and coordinate among.
The temporal dimension of the problem exhibits
astronomical complexity as well. Each of the 300 or so GM
subsystems will typically undergo enhancements or fixes
within 10 or more cadences within a 2 year period, resulting
in 10300 possible subsystem version combinations. As with
the number of feature combinations, this also vastly exceeds
the 1080 atoms in the observable universe [19].

5. Consistency and traceability across the life cycle are
required. Each vehicle is the result of an engineering
process that spans requirements, design, implementation,
calibration, layout and interconnection of electronic control
units (ECUs), allocation of software to the ECU network,
production of a manufacturing bill-of-materials, and testing.
Each of the artifacts must be consistent with each other, in
that they must all be accurate with respect to the vehicle to
which they apply. Further, that consistency must be
demonstrable through feature interdependency constraints as
well as traceability among lifecycle phases..

6. The organization is very large. Ultimately up to 5,000
engineers will be directly working on artifacts that are part of
the product line, some in roles newly defined expressly to
support the PLE effort.

The emergence of hybrid and alternative fuel vehicles and new
active safety features, which dramatically increase the amount of
product line diversity, plus the new economic reality in the
automotive industry that leaves little margin for technical error,
drove GM to plan to overhaul its engineering tools and processes.
The result is the Next Generation Tools (NGT) initiative.

3. NGT AND GM’S MARCH TOWARDS
“CONVERGENCE”
Product line engineering at its heart is about sharing, and about
eliminating duplication. At GM this is called “convergence,” and
has been an ongoing work in progress for decades. NGT is the
latest manifestation of a long-standing strategy. It began with the
merging of branded divisions in 1991, continued with the
adoption of a common electrical and electronic architecture and
management of requirements to give features a common look and
feel in the late 1990s, and grew with the commitment to adopt the
AUTOSAR (AUTomotive Open System ARchitecture). open
standards for automotive E/E (Electrics/Electronics) architectures
[2] in the early 2000’s.

To create a roadmap for this new convergence, GM created the
Next Generation Tools (NGT) initiative in 2008. NGT was
originally intended to answer the question “What common tools
and processes shall we all adopt to power this convergence?” GM
wanted an open tooling solution, with the ability to obtain the
best-of-class life cycle tooling solutions from different vendors.
After an extensive search, GM settled on a number of different
IBM Rational tools, including

 DOORS for requirements management (precipitating a
migration from Microsoft Word, GM’s previous choice for
requirements)

 Rhapsody for system design and models management
 RPE (Rational Publishing Engine) for documentation

production
 Team Concert for change management and Synergy for

configuration management

As GM investigated these and other tools, they recognized that
AUTOSAR was only one step on the road to a more advanced
product line engineering capability. As this realization dawned,
GM recognized that none of the tools they had selected were
“product-line-aware,” and that they needed a tool to manage
variation points in their engineering artifacts and help configure
vehicle-specific engineering products. For this, they chose Gears
from BigLever Software, currently in use to power other large-
scale industrial product line engineering efforts [8][10][4] and
three SPLC Hall of Fame members [17].

4. MEANWHILE, PLE EVOLVES
While the stage was being set at GM for the unfolding of a
massive product line story, the field of product line engineering
was not standing still. Indeed, it was evolving a new set of
concepts and technology that has been referred to as second
generation product line engineering (2GPLE) [9]. This
characterization represents seen-in-practice extensions to an early
paradigm centered mainly on core asset production and product
derivation.

Although generational definitions based on industry trends are
imprecise, 2GPLE can be said to comprise five aspects. None of
these facets of 2GPLE are incompatible with or contradict earlier
approaches to software product line engineering [13][20][5] –
indeed, all five are mentioned as possible. The difference is that
in 2GPLE they have emerged in a central role, essential to support
large-scale practice. The five facets of 2GPLE will be discussed
in turn.

4.1 Features as the lingua franca to express
product differences across the lifecycle
The concept of “feature” allows a consistent abstraction to be
employed when making choices from vehicle configuration all the

way down to the deployment of software components onto an
electronics architecture. GM is elevating what they call a bill-of-
features to the role of communication vehicle between business,
product marketing, and engineering units. The goal is to use this
to express and automatically derive content for vehicles in terms
of desired features and capabilities, rather than describing vehicles
in terms of its bill-of-materials – that is, its listing of parts and
pieces. Although a bill-of-materials will still be needed for
manufacturing, the vision of GM’s PLE effort is that the bill-of-
materials for a vehicle’s electronics is generated from its bill-of-
features.

To capture features, here is the set of feature modeling constructs
(provided by Gears) that GM is using for its product line work.
They are:

• Feature declarations are parameters that express the
diversity in the product line for a system or subsystem.
Feature declarations typically express the customer-visible
diversity among the products in a product line.

Feature declarations have types. When a feature is chosen for
inclusion in a product, it must be given a value consistent
with its type. Table 1 shows the feature types supported by
Gears.

Table 1 Gears feature types

Boolean true, false Enum-
eration

Select exactly one
value from sub-
ordinate features.

Integer,
Float

Signed or
unsigned
numeric
value

 Set

Select zero or more
values from
subordinate
features.

String

Character
string
delimited by
double
quotes

 Record
Select all values
from subordinate
features.

Character

Single
character
delimited by
single quotes

 Atom
Named member/
value of a set or
enumeration.

• Feature assertions describe constraints and

dependencies among the feature declarations. Feature
assertions in Gears express REQUIRES or EXCLUDES
relations. They express the constraint that a feature (or
combination of features), if present, either requires or
excludes the presence of another feature (or
combination of features). For example, an assertion
could express the need for software-actuated brakes to
be present whenever the park assist option is on the
vehicle, or the need for certain switches to be present if
certain lights are installed.

• Feature profiles are used to select and assign values to
the feature declaration parameters for the purpose of
instantiating a product. A feature profile is associated
with a product, and reflects the actual choices you
make: Two door with sport package but no moon roof;
or four door with luxury package and moon roof. The
values assigned in feature profiles must satisfy the
constraints and dependencies expressed by the
assertions in the feature declarations.

• Assets are the abstraction for systems and software
artifacts in a production line. They are the building
blocks of the products in the product line. Assets may

be requirements, architecture and design documents,
source code files, calibration sets, test cases, and so
forth – artifacts from any phase of the development life
cycle.

• Variation points encapsulate the variations in the assets
used to build products. Feature declarations are mapped
to these variation points, and a feature profile is mapped
to the choices made at each variation point when
building a product. In Gears, a variation point is
instantiated by one or more variants, one of which will
“stand in” for the variation point when a feature profile
is used to build a product. A variant can “stand in” as is
(in which case, the variation is accomplished by
choosing which variant to use), or it can “stand in” after
being transformed by applying a match-substitution
pattern expressed in the regular-expression language of
Perl.

Figure 2 illustrates how this small set of constructs – a feature
model composed of feature declarations, feature assertions, and
feature profiles, plus assets and variation points – give us the
concept of a production line (the part of the figure inside the red
box). Assets are built and maintained on the left; each is endowed
with one or more variation points (indicated by the gear symbol).
Feature profiles determine how the assets are instantiated (by
exercising their variation points) to produce product-ready
artifacts. Under this paradigm, organizations become production-
centric rather than product-centric.

Figure 2 A production line. Feature profiles drive

instantiation of assets’ variation points, which are exercised
by the configurator to produce product-ready instances.

(© BigLever Software, Inc.)

4.2 Consistent variation management in
artifacts across the full engineering lifecycle
It has long been a stated tenet of product line practice that core
assets include more than software. For example, the Software
Engineering Institute’s Framework for Product Line Practice [14]
states that “architecture, requirements specifications, testing-
related artifacts, budgets, schedules, plans, and production
infrastructure can all constitute core assets.” However, a complete
systems and software PLE lifecycle solution requires more than
just a statement of eligibility. It requires consistent treatment of
the artifacts’ variation points under the production infrastructure,
so that a full set of demonstrably consistent supporting artifacts
can be systematically generated for each product. The alternative,
trying to translate between the different representations and
characterizations of features and variations across the boundaries
between stages in the lifecycle, is untenable in large-scale
practice.

The artifacts at GM to support this process include requirements,
system architectures and designs, source code implementation,
calibration parameters, test cases, and documentation. Some of
the documentation is intended for suppliers, who will provide
some of the necessary software and hardware components. GM’s
long-term goal is that all of these are endowed with variation
points, which can be exercised to correspond to feature choices.

Common representation of variation points is key to achieving
traceability from requirements to deployment. Traceability is of
great concern for GM. Every requirement needs to be traceable to
one or more design elements that satisfy that requirements, and
each design element should be traceable back to one or more
requirements that it satisfies. Each design element needs to be
traceable forward to its implementation and vice versa. Each
requirement needs to be traceable to one or more test cases that
validate whether or not the requirement is satisfied in the final
product. Managing all of these artifacts consistently, by tying
their variations to features, is the key to achieving this.

4.3 CM that maintains assets, not products or
asset instantiations
The most important aspect of CM in 2GPLE is that the full
superset of available PLE assets (and not the individual products
or systems) are managed under CM. A new version of a product
is not derived from a previous version of the same product, but
from the shared superset of PLE assets themselves.

Contrast this to product-centric CM, illustrated in Figure 3.
Suppose a defect is discovered in Product B after it’s been
deployed, and the defect is traced back to product B’s
requirements. The Product B team fixes the defect and re-
deploys. But Product B’s requirements might have been
borrowed from Product A’s requirements, and Product N’s code
might have been borrowed from (defective) product B’s. By the
time all of the potential dependencies have been run to ground to
make sure the defect is eliminated from every place it might occur
in n products, n(n-1) interactions have occurred, for an O(n2)
complexity.

By contrast, using the scheme shown in Figure 2, the requirements
defect will be fixed in the asset, not the products. The affected
products will be re-generated. This is an O(n) proposition.

Figure 3 A product-centric perspective with O(n2) complexity

(© BigLever Software, Inc.)
The configurator in the heart of the production line enables this
simplified CM scheme and complexity reduction, because it
makes it practical to re-generate any number of end products
affected by a change in a shared asset.

4.4 Product lines across organizational
boundaries
For PLE to work at large organizations, it may be impractical to
have a single organizational unit tasked with the care and feeding
of the shared PLE assets [18]. Certainly having one global
collection of feature declarations for an entire production line is
impractical. Large feature sets, as we have seen, engender
intractable and incomprehensible combinatorics. Subsystem
engineers have no interest or need to see all of the feature
diversity in other subsystems. For example, engineers for an
automotive transmission system do not need to see feature
abstractions that capture the diversity in the entertainment or GPS
navigation system. It makes no sense to comingle them.

It makes much more sense to modularize the feature model in a
way that corresponds to the organizational structure of the
enterprise. Although these structures can change over time [6],
they make an excellent starting point and let the organization
begin to adopt PLE using familiar units.

At GM, a vehicle is composed from a set of integration areas
(such as safety or human-vehicle integration), which assemble
combinations of subsystems, which are in turn composed of
functional elements, which are implemented by compositions of
software components and calibrations that are loaded onto
hardware components arranged in one or more physical
architecture topologies. At each level in this decomposition –
which is not necessarily hierarchical – engineers are assigned
responsibility for managing the artifacts and configurations at that
level, all of which are imbued with rich and numerous kinds of
variation. Assembling a vehicle from the most primitive elements
would simply be intractable. By contrast, a vehicle is more like a
system of systems [11], which is managed as a product-line-of-
product-lines. At GM the nesting is at least four levels deep.

Each of these units represents a domain, by which we mean a
body of knowledge [7]. Integration areas and subsystems are part
of the fabric of the company. Building a subsystem for a vehicle,
or combining subsystems in an integration area, or implementing
a functional element requires specialized knowledge. In a PLE
context, that specialized knowledge becomes knowledge about the
variations that are possible, and the result is a number of product
lines that each contribute instances to the overall vehicle product
line.
In addition to the constructs outlined in Section 4.1, there are
three more constructs to facilitate the interfacing and coordination
between levels in the hierarchical product line: mixins, matrices,
and imported production lines.

1. Mixins. Although feature declarations may fall cleanly into
the realm of one asset or another, there are many cases where
a feature declaration applies to two or more assets. For
example, the automotive platform (Buick Regal? Chevy
Cruze? Cadillac CTS?) and the region for which the vehicle
is being marketed (North America? Brazil? China?)
constitute features that determine how an asset should be
configured at many levels: Integration area, subsystem,
functional element, component. Rather than duplicating the
same feature declaration in multiple assets, a mixin allows
creation of a feature declaration in one place to "mix it into"
the feature declarations of multiple assets, by reference.

Mixins are more than a convenience to avoid duplicative
feature declarations. They also encapsulate, in a single
location, the feature profiles built from the feature
declarations. Having a single location for the feature profiles

prevents inconsistencies when composing assets to create a
complete system.

2. Matrices. A production line is the “virtual factory” that
knows how to build products by configuring assets in
accordance with selected feature profiles. To build a
product, you need to tell the configurator what feature profile
to use for each asset and each mixin in the production line.
A matrix is a table showing the choices to build a complete
and consistent product. Each row specifies one product.
Each column specifies a choice of feature profile for a mixin
or an asset.
A complete product instance is “actuated” by actuating every
asset and nested production line column that has an entry for
that product. Each asset and nested production line is
actuated according to its cell value in the row. If an asset
imports a mixin, the mixin feature profile to be used is
determined by its cell value in that row.

Some products may not need all of the assets. For example,
low-end products in a production line may not include
"luxury" assets that are aimed at high-end products. Each
matrix allows you to include or exclude individual mixins
and assets to accommodate such product diversity.

Figure 4 A Gears matrix, with three rows for three products.
The yellow columns show feature profile choices for mixins;

the blue columns show feature profile choices for assets.
3. Imported production lines. Gears allows you to create a

hierarchy of production lines by nesting one production line
into another production line. In order to use a production line
as a nested production line, it must first be imported. An
imported production line will be added as a column in the
matrices for the importing production line, just like an asset
or mixin. For example, engineers at GM have defined a
production line for the Safety integration area. In order to
provide a Safety package to a vehicle, the Safety production
line must include specifically configured subsystems from a
number of subsystems (such as Body and Active Safety),
which are their own production lines. A subsystem
production line, in turn, can import production lines
corresponding to functional elements, and so forth.

4.5 Industrial-strength automation
The last ingredient in 2GPLE is a configurator employed to
maintain configurations, and translate feature profiles into assets
with their variation points exercised in prescribed ways. The
tooling needs to be able to support the construction and
management of feature models (including feature declarations,
assertions, and profiles), assets and their variation points, support
hierarchical production lines, and map from feature choices to
asset instances (this is the job of the matrices). Further, it needs to
either provide version control for the models and artifacts or (even
better) work seamlessly on top of the user’s own choice of change
management system.

A major requirement for the tooling is that it supports the
specification and selection of variation in assets and artifacts from
across the entire spectrum of the product lifecycle. This means
that the tool will have to support variation in, for example,
DOORS requirements modules, Microsoft Word documents and

Excel spreadsheets, build files for Make or Ant, Rhapsody UML
models, and many more.

There are fundamentally three ways to achieve variation in an
asset, depending on what you know about the digital
representation of the associated artifact:
• The representation of the artifact is proprietary and closed, or

editors for it are not available or are impractical. For
example, if our products include a picture that is different
from product to product, some of our artifacts may be GIF or
JPG files. To achieve variation, the variation point can
simply choose from a selection of variants, using each one as
is, as opposed to trying to change the picture by editing the
image stored in a one-size-fits-all picture file.

• The representation of the artifact is “open,” so that you can
change it using an available open-market tool. For example,
artifacts stored as simple text files may be transformed by
simple word or line substitution. Artifacts that are Microsoft
Word documents stored in Office Open XML format can be
transformed by third-party tools. In this case, the variation
point operates by transforming a single variant by
transforming it appropriately for each product being built.

• The representation of the artifact is proprietary, but the
owning organization offers a business relationship to allow
your tool to edit their artifacts. Suppose your requirements
are stored in DOORS, using hundreds and hundreds of
DOORS requirements objects. The representation of those
objects is proprietary, but using the strategy in the first bullet
is out of the question: Swapping in and out whole
requirements documents or databases that each differ by just
a little bit is untenable. It would be much better to write a
piece of software that can insert variation points throughout
the DOORS representation of a body of requirements. That
requires an arrangement with the vendor (IBM Rational in
this case) to open up their representation.

Figure 5 shows how Gears supports various lifecycle artifacts
maintained under the proprietary auspices of various tools. In that
figure, a bridge is a piece of software that “knows” the other-tool
representation, and presents a “product-line-aware” user interface
for that tool that allows product line engineers to insert variation
points in the artifacts maintained by that tool.

Figure 5 Gears and its bridges to other lifecycle tools

(© BigLever Software, Inc.)
First-generation approaches always discussed the need for
automation; second-generation approaches require it. Further,
they don’t just require technical proficiency from the tool but
interface relationships to lifecycle tools and their providers.

5. GM’S APPROACH FOR MEGA-SCALE
PLE
This section describes in greater detail how GM has adopted
2GPLE as their technical roadmap for the future.

5.1 GM’s architectural decomposition
GM’s architectural strategy plays a key role in how it is rolling
out PLE. The strategy is one of logical decomposition as a way to
gain control over the complexity of building a vehicle’s
electronics, and a way to allot the thousands of engineers into
organizational units with clearly scoped roles and responsibilities.

• Functional architecture: First, a vehicle consists of a
number of domains. These are “containers” for capturing the
requirements necessary to describe the electronics terms
applicable to an entire vehicle. Domains define areas of
related functionality. For example, Powertrain is a domain,
as is HVAC (heating, ventilation, and air conditioning).

Orthogonal to domains are integration areas. Integration
areas can be thought of knowledge areas for satisfying high-
level stakeholder requirements for vehicles. Requirements
here span domains. For example, Noise and Vibration is an
integration area; it “touches” any domain that can contribute
noise or vibration to the occupants’ driving experience:
Powertrain, Body, Chassis, HVAC, and more.

GM refers to integration areas and domains together as its
functional architecture. The functional architecture provides
the over-arching structure to host the hierarchical PLE
models. Each domain or integration area team will build the
PLE models for their area of concern in corresponding part
of the functional architecture hierarchy. Figure 6 illustrates.

Figure 6 Tool view of GM’s Functional Architecture, showing
some of the integration areas and domains

• Implementation architecture. Domains comprise
subsystems. Subsystems represent physical systems on
vehicles. There are subsystems for brakes, external lighting,
internal lighting, entry and egress, and many more.
Subsystems have their own requirements, which must permit
the subsystems to play their proper role in the domains and
(in turn) integration areas that need them. Subsystem
designers in turn decompose their subsystems into functions,
and functions into functional elements, and write
requirements for each. Components are units of
implementation that satisfy the requirements for functions
and functional elements. Components are arranged in a
decomposition hierarchy; leaf nodes are components; higher
nodes (which are just aggregations of their descendants in the
tree) are called compositions. Components may be software
components or hardware components, depending on how the
functional elements are satisfied. GM calls this component

structure (with components mapped to the functional
elements they satisfy) its implementation architecture.

• Deployment architecture. Next, the components have to be
assigned a place in the onboard electronic architecture
topology. Software components need to be assigned to an
electronic control unit (ECU), and hardware components
have to be assigned a spot in the topology. The selection of a
topology from a small number available, the assignment of
ECUs to spots in the topology, and the assignment of
software to ECUs all constitute what GM calls its
deployment architecture.

• Vehicle application architecture. Finally, the components
need to be laid out on a vehicle. This architecture determines
where the ECUs are stationed, and the type, position, and
routing of the wire harnesses to connect the sensors,
actuators, and ECUs.

These architectures – functional, implementation, deployment,
and vehicle application – institutionalize and add structure to
concepts that are deeply ingrained in the organizational and
technical fabric at GM. For instance, there are centers of deep
expertise in brakes and lighting and keyed/keyless entry systems
and dozens of other domains. As part of PLE adoption, these
centers are not going to be discarded in favor of a massive re-
organization involving the re-orientation, re-assignment, and re-
training of some 4000-5000 engineers.

5.2 Roles
GM’s embrace of 2GPLE has led to the creation of a few new and
refined engineering roles that have come about as a direct result of
piloting their hierarchical product line. Figure 7 sketches the
major PLE roles and their broad responsibilities vis-a-vis
maintaining the PLE models and artifacts. This section will
highlight a few of those.

Figure 7 Product line engineering roles at GM

5.2.1 FEATURE OWNER
Feature owners take ownership of GM features (customer-visible
features such as cruise control or lane keep assist or hundreds of
others that are visible and bring value to car owners).

These features are, in a sense, abstractions. They only become
tangible when realized by concrete artifacts: requirements,
functions, software components, electronic control units, and
wiring. In GM’s PLE environment, each of those artifacts will
also embody variation. It is the feature owner’s job to make sure
that all of those artifacts in “supporting roles” are adequate and
correctly provide the feature to GM’s customers.
A feature owner is the main technical contact to external teams
who need to know about the feature from the point of view of

assembling a vehicle from this and other features. This engineer is
the recognized expert for the functional area regarding the
feature’s required variants, the system constraints it imposes, and
how it integrates onto a vehicle platform.

A feature owner is also responsible for modeling the feature and
its variations in Gears.

5.2.2 FUNCTIONAL ARCHITECT
This engineer owns a specific area of the functional architecture
and as such establishes ownership and boundaries between system
level assets. Together, the functional architects maintain the
functional architecture taxonomy introduced above.

With the advent of the NGT PLE effort, functional architects have
taken on a new and critical role: Together, they are the keepers
and centralized owners of all of the PLE models. Their job is to
ensure that the PLE models produced inside their assigned area by
feature owners, asset owners, and others are consistent, fit
together, and represent best PLE practice.
Functional architects are each assigned a domain, which will
involve several subsystems. As PLE practices are introduced into
each domain, functional architects might actually build the PLE
models, working with feature owners. Under this scheme, the
feature owners remain the subject matter experts about their
features; the functional architects translate (or help the feature
owners translate) that knowledge into well-structured and
consistent PLE models.

5.2.3 PRODUCT LINE INTEGRATION ENGINEER
This is another new role at GM, brought about by PLE. This
engineer collaborates with Vehicle Product Teams in the selection
of a ‘bill-of-features’ for a vehicle being planned. The product
line integration engineer also collaborates with the feature owners
in the identification of the top-level subsystem production line
‘products’ that will be offered up to vehicles. The vehicle team
for a vehicle will need the services and advice of a team of
product line integration engineers, who together will put together
the bill-of-features for that vehicle’s electronics system. When the
bill-of-features for a vehicle is created, the product line integration
engineers will be at the table.

For example, the vehicle team for the Buick Verano wants to
understand what kind of climate control options they can offer
with the car (or, to put it another way, what climate control
features are eligible for the Verano’s bill-of-features, and what the
downstream implications are of each). The product line
integration engineer responsible for heating, ventilation, and air
conditioning (HVAC) systems will offer up various automatic and
manual climate control systems. If a vehicle might one day be
powered by hybrid or next-generation energy and propulsion
systems, this might mandate another kind of HVAC system.

The vehicle teams aren’t interested in the details of the features’
implementations, but only in how the features will appear to the
customer and how they interact with each other. The product line
integration engineers, then, manage subsystem “products” that are
exposed at the vehicle and bill-of-features level.

5.2.4 ASSET OWNER
The remaining roles in Figure 7 are asset owners. These
engineers manage various kinds of assets across their life cycle,
and establish variation points in the assets.

A requirements engineer is one kind of asset owner. Their
responsibilities include migrating requirements from legacy
requirements assets (mostly Word documents) into DOORS and,

along the way, imbuing those requirements with variation points
that support features.

Asset owners, including requirements engineers, are responsible
for modeling the features that their assets make available to the
consumers of those assets, and the variations in those features.
These features are often strongly suggested, if not identified
outright, in existing technical specifications. Thus, feature
creation is more of an identification and extraction process, as
opposed to an invention process. This helps make things go more
smoothly and predictably.

5.3 Organizational adoption
Launching and institutionalizing [16] this approach at GM has
required significant investment over the last two years or more,
and that investment is ongoing. There has been a group of
champions and advocates of the PLE approach throughout the
effort. Early on, they sponsored a two-week workshop to show
how the approach (using Gears in concert with DOORS) could
tame the requirements for a major subsystem, with variations
clearly identified and managed. This pilot effort produced more
strong advocates, and steered GM towards their current tooling
approach.

After that followed a steady series of workshops and technical
meetings with senior engineers to work out how to apply the
concepts at GM; the eventual results of these meetings include the
architectures and roles described above, plus a vision of how
features could be used across all of the architectures to describe
variation. All the while, the champions practiced internal
evangelizing, advocating the approach to management and
engineers alike. One-day requirements workshops were held with
subsystem owners to duplicate the results of the first two-week
workshop.

The latter part of 2011 saw the launch of a series of some two
dozen Bill-of-Features Workshops. These workshops bring
together a small group of feature owners and subsystem experts in
a particular area – for example, interior lighting. They spend a day
learning the PLE approach and then actually using Gears to model
the features in their domain. An important goal is to have
participants experience the “PLE epiphany,” when they see how
2GPLE and the NGT tool suite will help them do their jobs better.
At the start of 2012, after two years of establishing buy-in, GM
launched a series of training courses. The course series kicks off
with a short introduction to PLE at GM, and continues with one-
day classroom courses in each of the tools and how they will be
used. In concert with the training are the establishment of
resources to help engineers once they go back to their desks:
Discussion boards, FAQ lists, help desks, and the like.

In a PLE undertaking of this magnitude and complexity, it is
unreasonable to expect that the engineering will be formulaic and
without incident. Questions and issues are being captured and
their answers stored in a “GM PLE Cookbook,” which will
include a set of patterns and anti-patterns for good practice, a list
of FAQs (including those above), and a set of naming conventions
for product line objects shared across organizations. This will
represents a trove of practical knowledge not usually divulged in
the product line literature, as well as another aid to
institutionalization at GM.

5.4 What is the end game?
One of GM’s senior electronics engineers characterizes the
electronics division’s job this way: “We build silver boxes,” he

said, “load software in them, and wire them together.” If they can
do that correctly for every vehicle they build, their job is done.

Whatever PLE and NGT can do to help achieve that purpose is a
win for GM. The long-term vision is to create a bill-of-features
for a vehicle (which manifests as a vehicle-level feature profile in
Gears) and automatically derive as much as feasible of the bill-of-
materials for that vehicle, including requirements, designs,
models, software, calibration data, tests, documentation,
allocation of software to hardware, wiring diagrams, and so forth.
That vision is years away from being achieved.

However, short of that, there are some intermediate steps that GM
is working towards. Examples include

• migrating all requirements to incorporate Gears
variation points that formalize feature-based variations
in the system, subsystem, and component requirements,

• generating calibration files and values that will need to
be loaded onto the electronics modules, or

• given a set of features on a car and the components that
need to be onboard to support those features, generating
a list of all of the digital signals that the serial networks
will have to accommodate.

Longer-term goals include calculating certain additive non-
functional properties of the electronics, such as weight or
generated heat or cost.

Even short of this capability, GM is already getting value out of
their PLE efforts even before they have started producing
instantiated engineering artifacts. Just defining an internally
consistent vehicle with consistent versions of subsystems,
functional elements, components, and hardware allocations
represents a very big step in managing the complexity at hand. To
be able to do this in an end-to-end fashion under the auspices of
fully interoperating tool suite is a capability not available at GM
before now. The automation – in this case, Gears – can do a
semantic check on the feature model and report anomalies, such
as the fact that this vehicle is supposed to support the lane-keep-
assist feature but the instrument cluster chosen for it doesn’t have
the correct display for that feature, or the chosen physical
architecture topology cannot support the serial data
communication required.

6. EXAMPLE: DAYTIME RUNNING
LIGHTS
We conclude by illustrating some of the points in this paper
through an example, which necessarily must be a small one. A
daytime running light (DRL) is a “lighting device on the front of a
roadgoing motor vehicle, installed in pairs, automatically
switched on when the vehicle is moving forward, emitting white,
yellow, or amber light to increase the conspicuity of the vehicle
during daylight conditions” [21].

6.1 DRL Requirements
DRLs are considered a feature at GM; they’re certainly visible to
the user. But not all cars have them. DRLs are required
equipment in Canada, Norway, and Sweden, prohibited in Japan
and China and optional in the United States, Europe, Australia,
and the rest of the world. (Region of sale turns out to be a major
discriminator among features, permitting or precluding a plethora
of other features.)

On vehicles that have them, DRLs can be “implemented” by
lamps dedicated to that purpose, or by front turn signal lamps,
reduced intensity low beam headlamps, full intensity low beam

headlamps, parking lamps, or a combination of parking lamps and
dedicated lamps.

Just as there are many ways to effect DRLs, there are many
choices for how to turn them on and off (including none at all,
leaving it up to the car to do so automatically). There is a thicket
of requirements concerning when DRLs may, must, and may not
be on. For example, in Europe DRLs must switch off
automatically when the front fog lamps (if the car has front fog
lamps) or headlamps are switched on, except when the headlamps
are “used to give intermittent luminous warnings at short
intervals” – that is, flashed.

These and other impinging factors consume page after page in the
requirements document for the exterior lighting subsystem, of
which DRLs are a member. These requirements are rife with
information about what requirements apply under what
conditions, and be used to identify variations in the DRL feature.

Besides being a feature by themselves, DRLs play a part in other
features as well. Some realizations of the “Lead me to my car”
feature flash the DRLs when the key fob is pressed. Police
vehicles have turn-everything-on features, which include
dedicated DRLs if the car is so equipped. Cornering lamps,
another feature, can only come on under certain conditions, and
affect DRLs if they share output devices.

6.2 Modeling DRLs
The feature owner for DRLs is responsible for understanding how
the DRL feature is realized, the variations it includes, and any
variant capabilities required because of its appearance in other
features.

Figure 8 shows a preliminary feature model for DRLs. The
feature model captures the output type (what lamps on the vehicle
can be used), if and how DRLs can be disabled, and how DRLs
are integrated with the car’s headlamp controls turn signals,
respectively.

Figure 8 Feature model for daytime running lights

Figure 9 shows how the output type sub-feature is expanded to
take into account all the possibilities. The output type is modeled
as a set; a vehicle can have any number of ways of realizing the
DRL feature, or none at all.

Figure 9 Expansion of the OutputType feature of DRLs

However, if a vehicle realizes the DRL feature with low-intensity
headlamps, then it cannot realize it with high-intensity headlamps
as well, and vice versa. An assertion captures this:

NOT	
 DRL_Algo.DRL_OutputType	
 >=	
 {ReducedIntLBHeadLamps,	

FullIntLBHeadLamps}	

This says that the OutputType set cannot include both of the
indicated values; in Gears, the symbol “>=” when used in an
expression involving sets means “is a superset of.”

The DRL feature owner builds these feature models in Gears,
under the conventions and standards developed by the functional
architects, and in particular the functional architect for the exterior
lighting domain. He or she will also build a matrix for the DRL
feature model that specifies a small number of flavors of the DRL
feature that can be made available to PLIE’s working to assemble
vehicles from features.

Simultaneously, requirements engineers who own the
requirements for this feature work to turn the DRL requirements
into a Gears asset, with variation points that (when exercised)
produce requirements that correspond to the requirements needed
for each case.

6.3 DRLs and deployment
Those responsible for choosing a deployment architecture are
another kind of asset owner; their asset is the set of ECUs needed
for the features on board, and the variation points they can provide
based on features and feature combinations chosen. These
variation points include basic network topology (currently two are
available; more may be added), how many ECUs will populate a
topology, what the choice of ECU hardware will be, and the
allocation of software components to each ECU.

6.4 DRLs and other features
Feature owners for other features that interact with DRLs (such as
the lead-me-to-my-car feature owner) will need to reference DRLs
in their feature models and profiles. They will coordinate with the
DRL feature owner, under the auspices of the functional architects
for the including domain or domains, to make sure that the DRL
feature can be referenced, by importing the DRL domain-level
mixin into their domain production line.

Other domains than exterior lighting will need the same ways to
refer to DRL in their feature models. For instance, the switches
that turn DRLs on and off are part of the Body domain, whereas
any indication that DRLs are on are part of the Displays domain.

6.5 DRLs and the vehicle
Finally, those defining a vehicle type and the myriad of features
combinations that GM wishes to offer with it, can do so by
importing all of the domains’ and integration areas’ production
lines, adding the highest layer to the product line hierarchy. They
will also define a matrix of “products” for each vehicle, defining
combinations of features in concert with each other.

7. CONCLUSIONS
The guiding PLE vision at GM is the ability to engineer vehicles –
across the full lifecycle – according to a “bill-of-features” rather
than the traditional “bill-of-materials.” Although still very much a
work in progress, the GM experience has already revealed a
number of lessons about mega-scale product line engineering.

First, the product line experience at General Motors can be seen as
intensively applying aspects of what has been called Second
Generation Product Line Engineering. This new perspective
brings the following ideas, which previous approaches always
allowed but never stressed, to the forefront:

• A focus on features as the “lingua franca” of variation and
product selection; the “bill-of-features” replaces the “bill-of-
materials” as the key engineering artifact for product
derivation.

• Treatment of artifacts across the entire lifecycle completely
consistently with each other, and consistently with the
software, as first-class components of the product line and
the derived products

• An emphasis on high-quality automation at the center of a
production line, to quickly turn a bill-of-features into a set of
instantiated lifecycle assets

• A CM and PLE approach geared to multi-baseline multi-
product management in a way to reduce the order of
complexity from O(n2) to O(n).

• Taking multi-organizational management in stride, by
providing feature model concepts such as mixins and
imported (hierarchical) production lines, to reflect the
structure of engineering activities and domain knowledge
present in an ultra-large organization.

Second, the GM experience also validates a small set of consistent
concepts is sufficient to model product lines of inordinate
complexity. Features (declarations, types, assertions, and
profiles), assets (that embody features, as well as variation points),
mixins, and matrices constitute a production line, the “factory”
that turns feature choices into asset instances. Allowing
production lines to import other production lines gives us
unlimited hierarchy, which can map to any organizational
structure in which specialized bodies of knowledge are
encapsulated throughout, no matter how many levels deep.

Third, one of the most important aspects of PLE and GM is the
application of consistent variation management in artifacts from
all across the lifecycle (the second bullet above), artifacts that are
currently maintained using other lifecycle tools. In order to
accomplish this, the automation engine has to embody business
partnerships with important tool vendors.

Future work involves continuing the march towards the ultimate
“end game” described in Section 5.4: Generating a complete bill-
of-materials for a vehicle by starting with its bill-of-features.
Ultimately, GM may investigate merging PLE with PLM (product
lifecycle management), which is the technology used in vehicle
manufacturing. That would represent a convergence with
repercussions across the entire manufacturing industry.

8. ACKNOWLEDGMENTS
Our thanks to everyone at General Motors who is involved in
making 2GPLE a success, and especially those who have been
involved through the roll-out effort. Their contributions have
made this case study, and the story it tells, possible.

9. REFERENCES
[1] “G.M. Regains the Top Spot in Global Automaking,”

Business Day, New York Times, January 19, 2012.
[2] Automotive Open System Architecture (AUTOSAR),

“Background,” www.autosar.org.
[3] Bosch, J. "Organizing for Software Product Lines," 117-134.

Proceedings of the 3rd International Workshop on Software
Architectures for Product Families (IWSAPF-3). Las Palmas
de Gran Canaria, Spain, March 15-17, 2000. Berlin,
Germany: Springer, 2000.

[4] Cezo, J., Krueer, C., “Use product line engineering to reduce
the total costs required to create, deploy & maintain systems
& software,” EE Times, December 10, 2008.

[5] Clements, P. & Northrop, L. Software Product Lines:
Practices and Patterns. Boston, MA: Addison-Wesley, 2002.

[6] Clements, P., Brownsword, L, “A Case Study in Successful
Product Line Development,” Software Engineering Institute
CMU/SEI-96-TR-016, September 1996.

[7] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study” (CMU/SEI-90-TR-021, ADA235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon
University, 1990.

[8] Krueger, C., Churchett, D., Buhrdorf, R., “HomeAway’s
Transition to Software Product Line Practice: Engineering
and Business Results in 60 Days,” Proceedings, 12th
International Software Product Line Conference, p 297-306.

[9] Lanman, J., Kemper, B., Rivera, J., Krueger, C., “Employing
the Second Generation Software Product-line for Live
Training Transformation,” Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC) 2011.

[10] Lombardi, C., “IBM partners on ‘smart’ wind system,”
CNET, October 6, 2010, http://news.cnet.com/8301-
11128_3-20018733-54.html

[11] Office of the Deputy Under Secretary of Defense for
Acquisition and Technology. Systems and Software
Engineering. Systems Engineering Guide for Systems of
Systems, Version 1.0. Washing-ton, DC: ODUSD(A&T)SSE,
2008. http://www.acq.osd.mil/sse/docs/SE-Guide-for-
SoS.pdf

[12] Paur, J. “Chevy Volt: King of (Software Cars),” Wired,
November 5, 2010, http://www.wired.com/autopia/2010/
11/chevy-volt-king-of-software-cars/

[13] Pohl, K., Böckle, G., van der Linden, F. Software Product
Line Engineering: Foundations, Principles, and Techniques,
Springer, 1998.

[14] Software Engineering Institute, “A Framework for Software
Product Line Practice, version 5.0,” http://www.sei.cmu.edu/
productlines/frame_report/index.html

[15] Software Engineering Institute, “A Framework for Software
Product Line Practice, version 5.0: Configuration
Management,” http://www.sei.cmu.edu/productlines/
frame_report/config.man.htm

[16] Software Engineering Institute, “A Framework for Software
Product Line Practice, version 5.0: Launching and
Institutionalizing,” http://www.sei.cmu.edu/productlines/
frame_report/launch.inst.PL.htm

[17] SPLC Software Product Line Hall of Fame,
http://splc.net/fame/gm.html

[18] Van der Linden, F., Schmid, K., Rommes, E. Software
Product Line in Action, Chapter 5, Springer, 2007.

[19] Villanueva, J. C., “Atoms in the Universe,”
http://www.universetoday.com/36302/atoms-in-the-universe
2009. The number of atoms in the observable universe is
approximately 1080 or 2260.

[20] Weiss, D. M. & Lai, C. T. R. Software Product-Line
Engineering: A Family-Based Software Development
Process. Reading, MA: Addison-Wesley, 1999.

[21] Wikipedia, “Daytime running lamp,”
http://en.wikipedia.org/wiki/Daytime_running_lamp

[22] Williams, Cheryl. “Algorithms, Algorithm Modeling,
Software and Software Architecture,” slide presentation,
available at http://www.eecs.umich.edu/courses/eecs486/
win03/notes/GMVisit.pdf

