
Product Line Engineering on the Right Side of the “V”

Susan P. Gregg
Denise M. Albert

Lockheed Martin
Moorestown, New Jersey 08057 USA

susan.p.gregg@lmco.com
denise.albert@lmco.com

Paul Clements
BigLever Software

Austin, Texas 78730 USA
pclements@biglever.com

ABSTRACT
Product line engineering (PLE) is well-known for the savings it
brings to organizations. This paper shows how a very large, in-
service systems and software product line is achieving PLE-based
savings in their verification and validation phase of development.
The paper addresses how to achieve the sharing across product
variants while the products being tested are evolving over time.
Additionally, we will give a pragmatic set of decision criteria to
help answer the longstanding issue in PLE-based testing of
whether to test on the domain side or the application (product)
side of the product derivation process.

CCS CONCEPTS
• Software and its engineering à Software product lines;

KEYWORDS
Product line engineering, software product lines, feature
modeling, feature profiles, bill-of-features, variation points,
product portfolio, product configurator, second generation product
line engineering, PLE factory, AEGIS Combat System

ACM Reference Format: Susan P. Gregg, Denise M. Albert,
Paul C. Cleements. 2017. Product Line Engineering on the Right
Side of the “V.” In Proceedings of SPLC ’17, Sevilla, Spain,
September 25-29, 2017, 10 pages.

DOI: 10.1145/3106195.3106219

1. INTRODUCTION
This paper tells the story of how a very large systems and
software product line is harvesting the benefits of product line
engineering on the right-hand side of the engineering “V” model –
that is, in the verification and validation activities associated with
product deployment.

Product line engineering (PLE) is well-known for the game-
changing savings it brings to organizations (for example,

[3][14][19][25][22][23]), compared to one-at-a-time development
or worse, parallel development. Case studies have, in the past,
most often focused on the development activities involved in the
creation of system artifacts – activities on the left side of the “V”.
PLE literature certainly acknowledges and touts the potential
savings available from the testing side, but case studies focusing
on how to gain those benefits in practice are not as plentiful.

This paper shows how a very large, industrial-strength, in-service
systems and software product line is achieving PLE-based V&V
savings. The product line that is the subject of this paper is the
AEGIS Weapons System, a large and complex naval command
and control system in wide use in several navies around the world;
the developing organization is Lockheed Martin, the world’s
largest defense contractor, employing 125,000 people worldwide.
The paper confirms that significant savings can be achieved from
sharing V&V activities and artifacts across product variants in a
product line, but the story of how it does so takes an unexpected
twist. How do you manage that sharing when the products you
are testing are continuously evolving in response to updated
requirements and the need for additional variants? We will show
how technical management policies drive V&V-based savings.

Finally, a longstanding issue in PLE-based testing is whether to
test on the domain side or the application (product) side of the
product derivation process. We will show how Lockheed Martin
answers that question pragmatically for AEGIS.

2. AEGIS
The product line being described here is the AEGIS Weapons
System, which is the major command-and-control component of
the AEGIS Combat System. AEGIS is a highly integrated naval
ship combat system in service on over 100 ships in the U.S. Navy
and elsewhere. AEGIS cruisers and destroyers constitute the
majority of the U.S. surface Navy and will continue to form the
core of the U.S. surface fleet for the next several decades. The
AEGIS Combat System is capable of simultaneous warfare on
many fronts: anti-air, anti-surface, anti-submarine, and strike
warfare. AEGIS, or a carefully chosen functional subset, is
deployed on some 100 naval vessels in the U.S. Navy, navies of
several key U.S. allies across the globe, vessels of the U.S. Coast
Guard, and even land-based ballistic missile defense installations.
AEGIS is a system that protects assets from airborne attack from
aircraft or missiles. It detects airborne threats, plans how to
engage them, and launches missiles to intercept and neutralize
them (Figure 1).
The mission of AEGIS includes

• self-defense (protecting the host platform from attack)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SPLC '17, September 25-29, 2017, Sevilla, Spain
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5221-5/17/09…$15.00
http://dx.doi.org/10.1145/3106195.3106219

• area air defense (for example, protecting a naval task
force that includes the host platform)

• long-range air defense and ballistic missile defense (for
example, protecting a geographical area from long-
range ballistic missiles) [18].

Figure 1: The Aegis-class destroyer USS Hopper (DDG 70)
launches a missile to intercept a short range ballistic missile

(U.S. Navy photo/Released).
With more than 40 years of significant investment by the U.S.
Navy and its allies, the Aegis Combat System is used globally by
six navies. In addition to the U.S., AEGIS is the maritime weapon
system of choice for Japan, the Republic of Korea, Australia,
Norway, and Spain [16].

Figure 2: Combat Information Center on a U.S. Navy AEGIS

cruiser (U.S. Navy photo/Released)
To give an idea of scale and complexity, the AEGIS Weapons
System comprises several million lines of source code and several
hundred thousand requirements objects.

3. THE “V” MODEL
To illustrate several of our points, we will appeal to the well-
known “V” model from software and system engineering [6]:

“The	 V	 model	 is	 a	 simple	 variant	 of	 the	 traditional	
waterfall	model	 of	 system	or	 software	 development.	 As	
illustrated	 in	 Figure	 1,	 the	 V	 model	 builds	 on	 the	
waterfall	 model	 by	 emphasizing	 verification	 and	

validation.	 The	 V	 model	 takes	 the	 bottom	 half	 of	 the	
waterfall	model	and	bends	it	upward	into	the	form	of	a	
V,	so	that	the	activities	on	the	right	verify	or	validate	the	
work	 products	 of	 the	 activity	 on	 the	 left.	 More	
specifically,	the	left	side	of	the	V	represents	the	analysis	
activities	 that	 decompose	 the	 users'	 needs	 into	 small,	
manageable	 pieces,	while	 the	 right	 side	 of	 the	V	 shows	
the	 corresponding	 synthesis	 activities	 that	 aggregate	
(and	 test)	 these	 pieces	 into	 a	 system	 that	 meets	 the	
users'	needs.”	

Figure 3: System engineering "V" model (example from [6])

The “V” model is more than just a re-shaped waterfall model.
Organizations practicing Agile development – including
Lockheed Martin in general and the AEGIS project in particular
[7] – make use of the “V” by taking the indicated steps in short,
rapid, iterative spirals (sprints).

4. AEGIS AND PRODUCT LINE
ENGINEERING
The AEGIS Weapons System (AWS) is developed, maintained,
and evolved explicitly as a product line. Internally, and
historically, the effort is known as the Common Source Library,
although the product line comprises more than software. The
AEGIS “products” come together as a single AWS that gets
combined with other systems to create the AEGIS Combat System
(ACS). Due to hardware, combat system, and mission differences,
a single instance of the ACS requires creation of multiple variants.
A significant saving across all phases of development is achieved
by taking advantage of commonality across variants. Here is how
Lockheed Martin’s test process document describes the approach:

The	 primary	 objective	 of	 the	 Common	 Source	 Library	
(CSL)	approach	is	to	develop	once	and	build	and	deploy	
many	 times	 from	one	set	of	 common	source	code.	 	This	
replaces	 the	 “clone	 and	 own”	 method	 of	 reuse	 for	
software	 and	 requirements.	 	 CSL	 supports	 the	 Navy’s	
Rapid	Capability	Insertion	Process	(RCIP)	objective.		The	
CSL	methodology	 supports	 the	 goal	 of	minimizing	 cost	
and	 schedule	 for	 delivering	 computer	 program	
capability	 updates,	 as	well	 as	maximizing	 reuse	 across	
surface	 ship	 classes.	 One	 of	 the	 goals	 of	 a	 common	
product	line	approach	is	to	achieve	an	economy	of	scale	
in	 cost,	 schedule,	 and	 reuse	when	 compared	 to	 using	 a	

“Clone	 and	Own”	 approach…	The	 historical	 “Clone	 and	
Own”	 approach	 necessitated	 maintaining	 multiple	
copies	of	requirements	and	processing	that	are	common	
to	all	 stakeholders.	 	Maintaining	a	single	core	software	
product	 that	 is	 common	 across	 multiple	 stakeholders	
implies	 that	 variations	 in	 core	 processing	 must	 be	
achievable	 across	 multiple	 programs	 each	 with	
potentially	 varying	 mission	 capabilities.	 	 Variation	
management	 is	 employed	 to	 separate	 core	 product	
functionality	 from	 capability	 unique	 functionality.			
Variation	 techniques	 provide	 the	 capability	 to	 develop	
and	 deliver	 product	 configurations	 to	 platforms	 or	
programs.	[17]		
	

Figure 4 continues the narrative with an excerpt of a Lockheed
Martin slide showing how they characterize their PLE approach
for AEGIS.

Figure 4: AEGIS as a product line

It has been reported that the product line approach has resulted in
cost avoidance totaling $47 million annually, just from
requirements- and software-related activities, when compared to
what it would have cost to carry out those activities for each
member of the product line separately [8].
Previous papers about this product line have described

• a three-level governance infrastructure put in place to
balance the needs of the several U.S. Government
agencies holding key stakeholder status in AEGIS [9]

• procedures and policies designed and adopted to ensure
intellectual property protection in configured products;
specifically to ensure that no export-restricted content is
placed into products heading overseas [5];

• a closer look at the economics of the PLE Factory and
how the cost avoidance benefits have increased as more
shared assets are added over time [8];

• Lockheed Martin’s experience of successfully
combining Feature-based PLE and Agile-based
development on AEGIS [7].

AEGIS remains a fertile proving ground for industrial-strength
real-world PLE practices. It was inducted into SPLC’s Product
Line Hall of Fame in 2015 [24].

4.1 AEGIS AND FEATURE-BASED PLE
There are many ways to carry out PLE in practice. Some are
based on simple reuse approaches where “core assets” are
checked out of a repository and then modified in whatever way is
needed to support specific products. Others involve the
construction of a “common platform” upon which different
products may be built.

Lockheed Martin is using a very specific approach to PLE that is
neither of these, and in order to appreciate some of the points that
follow, it is necessary to gain some insight into what that
approach entails.

Their approach uses an automated commercially-available
configurator to produce product-specific engineering artifacts
from shared assets according to the feature selections specific to a
product. This approach has often been referred to as “second
generation PLE” [4][11][12][13] but we will refer to it here as
“Feature-Based PLE,” to align with a forthcoming ISO standard
that will describe the approach by that name.
A product line includes various types of engineering assets, such
as system or software requirements, design documentation,
software source code, test cases and procedures, and more, that
are used in the creation, deployment, and sustainment of products.
In Feature-based PLE, the engineering assets are shared across the
product line. Shared assets can be whatever artifacts are
representable digitally. They either constitute part of a product or
support the engineering process to create a product. These shared
assets are created and maintained as supersets, meaning that they
contain any content needed to support any of the products. A
configurator (for example, and in Lockheed Martin’s case, the
Gears configurator and PLE environment [1]) produces product-
specific instances by actuating a product — that is, exercising
variation points in the supersets according to the feature choices
for that product. A feature is a distinguishing characteristic that
sets products in a product line apart from each other [10]. A
variation point is a specification attached to a piece of content in a
shared asset that stipulates the feature choices under which that
content is needed in the product-specific instance of that shared
asset. The collection of feature choices for a product is called a
Bill-of-Features, and is drawn from all of the available feature
choices for the product line, which are captured in a feature
catalog.

Figure 5 illustrates these concepts. The shared asset supersets are
shown in the “V” on the bottom left (the contents of the “V”
figures are notional and can be whatever an organization chooses).
Gear symbols denote variation points that are defined in terms of
features in the product line’s feature catalog. The shared assets,
the feature catalog, the Bills-of-Features, the processes related to
creation and evolution, and the staffed roles to carry it all out
make up the PLE factory. In Figure 5, the PLE factory comprises
everything to the left of the product subsets. Another name for
the PLE factory is production line.

Once this production line capability is established, products are
instantiated – derived from the shared assets configured according
to a Bill-of-Features – rather than manually created.

Figure 6: Effort avoidance due to sharing engineering effort

across products

5. FEATURE-BASED PLE AND DEFECT
MITIGATION
The unofficial name of this paradigm within Lockheed Martin and
the U.S. Navy directorate responsible for receiving its output is
“Fix it once!” [9]. Before Lockheed Martin adopted the Feature-
based PLE approach for AEGIS, a single defect was fixed
multiple times in multiples ways on the different AEGIS code
bases, giving rise to egregious duplication of effort and expense.
That expense was a primary motivation for moving to PLE. Now
every defect is fixed once, inside the factory, and via the

configurator the fix is propagated to every ship that requires it.
On the flip side, an unintended consequence of moving to a
feature-based PLE is that when a customer adds a new capability
or improvement to the CSL, that feature is readily available to all
the other CSL customers. This is managed using the feature
catalog.

Figure 6 illustrates the idea. Every defect fix will affect some
number of products. The blue component of each column
accounts for the effort for making the fix, which is required in any
case. The gold component accounts for the cost of setting up the
PLE factory for the product line. The green component measures
effort avoided by, in the case of defect solutions, “fixing it once”
and not once per product.

6. TESTING ON AEGIS
Figure 7 explains the five levels of testing that must be accounted
for on each and every AEGIS system. In the sections that follow,
which discuss how testing activities can be most advantageously
carried out in a PLE environment, these are the activities to which
we are referring.

7. FEATURE-BASED PLE AND TESTING
Feature-based PLE can reduce the cost and effort associated with
testing1 in two ways:

• Increasing testing accuracy

• Decreasing testing activity

• For testing activities that do occur, Feature-based PLE
offers the opportunity for dramatic savings by

1 In the remainder of this paper, we will use the word “testing” as an

informal shorthand for any verfication and validation activity.

Figure 5: PLE as a factory.

performing testing activities inside the factory rather
than once per product, outside the factory.

7.1 INCREASING TESTING ACCURACY
Test artifacts – test plans, test cases, test procedures, and so forth
– can be shared assets in a PLE factory. Like other shared assets,
they can be imbued with variation points that allow the
configurator to choose content for a specific product based on the
feature choices (Bill-of-Features) for that product.

Figure 8 shows a screen shot from a test management tool (in this
case, IBM’s Rational Quality Manager) that has been integrated
with Gears [2] to enable the creation and exercise of variation
points to configure a suite of test cases to support a specific
product. (This is taken from an example in the automotive
domain.) In the six test cases shown, notice that test cases 93, 94,
95, and 96 have small gear symbols in their icon. This indicates
that they are variation points, meaning that some products will
require them and others won’t. Test cases 91 and 92 do not have
this icon, which means they are common – that is, every product
requires them.

Each test case that is a variation point is accompanied by a logic
statement (not shown) that indicates what feature selections cause
its presence to be required in the end product. Figure 8 shows the
results of an actuation in which feature choices were made that

caused test cases 93 and 94 to be selected, and test cases 95 and
96 to be excluded, for the product. So, out of the test cases shown

in Figure 8, test cases 91, 92, 93, and 94 should be executed for
the product being built.

Figure 8: Common test cases, test cases included, and test

cases excluded, based on feature selections

Figure 7: AEGIS levels of testing

The result is a suite of test artifacts perfectly tailored to the
product being tested. This prevents running tests that are doomed
to fail because the capability being tested was not even included
in the product. It also prevents failing to run tests for a capability
that was included. The first case is expensive. The second case,
if a defect was allowed into the product, can be expensive to
catastrophic.

Lockheed Martin is planning to take this approach with AEGIS,
but is not yet carrying it out. They have focused on the second
source of testing benefit from Feature-based PLE: Decreasing
testing activity.

7.2 DECREASING TESTING ACTIVITY
THROUGH SHARING
Testing can be a long and expensive activity for any system, but
especially for systems as large and complex as AEGIS, where
testing can approach 40% of the overall cost of fielding a system.

Carrying out testing in a Feature-based PLE context essentially
involves answering the following question: What testing can you
perform inside the factory, on the shared assets and the product
line as a whole, and what testing must you perform outside the
factory, separately on the actuated products?

Obviously, “inside the factory” is preferred. Analogous to the
slogan for defect mitigation, this translates to “test it once.” Were
that possible in all cases, test effort and cost would be optimally
decreased.

Of course, the more-expensive testing outside the factory on
multiple product instances has arguments in its favor. One cannot
know whether a system will behave correctly in its environment
and context unless one tests it in that environment and context,
which means in the context of a working product. In this view of
the world, everything has to be tested in every variant of the
product in which it is used, and no sharing is possible.

But that is prohibitively expensive, and so a middle ground must
be found that balances resource expenditure with meeting
reliability goals. The following sections explain how Lockheed
Martin has found that middle ground to bring a very large portion
of AEGIS testing inside the factory.

7.3 REDUCING TESTING OUTSIDE THE
FACTORY
There are a number of ways that testing can be justifiably moved
inside the factory, or at least avoided or reduced outside the
factory, thus reducing the per-product duplication of effort
inherent in outside-the-factory testing:

• Standalone testing is performed on the shared assets
inside the factory, since no shared asset can be deemed
“fit for duty” in a PLE factory unless it has been
standalone-tested at a minimum. For software, this
means unit testing. For hardware components, it means
bench testing.

• Build and test functional groups: Some PLE
organizations also combine software units that are
always, or at least often, used in concert with each other
in products. These essentially form larger units that can
be pre-integrated and pre-(unit)-tested inside the factory
[3].

• Assess consequences of defects: No program, not even
a safety-critical one such as an avionics system, has the
resources to test every aspect of every component to

100% reliability. The immediate conclusion is that the
finite testing resources should be focused on the testing
that matters the most. To help achieve this goal, DO-
178B, the de facto quality standard of airborne systems,
recognizes five design assurance levels for components
in order to assist in applying pragmatic triage rules for
testing [20]:

A. Catastrophic - Failure may cause multiple
fatalities, usually with loss of the airplane.

B. Hazardous - Failure has a large negative impact
on safety or performance, or reduces the ability of
the crew to operate the aircraft due to physical
distress or a higher workload, or causes serious or
fatal injuries among the passengers.

C. Major - Failure significantly reduces the safety
margin or significantly increases crew workload.
May result in passenger discomfort (or even minor
injuries).

D. Minor - Failure slightly reduces the safety margin
or slightly increases crew workload. Examples
might include causing passenger inconvenience or
a routine flight plan change.

E. No Effect - Failure has no impact on safety,
aircraft operation, or crew workload.

Where we have such a categorization, we could use it to
triage our testing activities. For instance, under DO-
178B it would make sense to rely on inside-the-factory
testing for Level E components for sure, and very likely
Level D components as well. For components of Levels
A through C, unless one or more of the other criteria in
this section apply, testing outside the factory would be
indicated.

• Assess past pedigree: If a component or capability is
stable and reliable, and has been so for an extended
period of time across multiple usage contexts, and
current usages contexts do not differ qualitatively from
the past ones, it may make sense to scale back on its
outside-the-factory testing. AEGIS uses the following
scheme to assess the risk associated with any new
development, as a way to address the confidence that
may be assigned to it:

o Type 1a: Low Risk, such as small intra-
element changes or upgrades

o Type 1b: Medium Risk, capturing larger or
more complex changes not suitably described
as low risk

o Type 2: High Risk, including major re-
architecture activities or capability upgrades,
or changes that are cross-element in scope or
affect system level threads.

Each of these risk levels comes with a set of testing
requirements appropriate for its risk level.

• Assess sensitivity to context: For AEGIS, Lockheed
Martin assesses how “close” to an interface a unit of
software resides in the software architecture. A unit of
software buried deep down in lower layers, for example,
is unlikely to be affected by different usage scenarios,
and its per-product, outside-the-factory testing can be
reduced. This metric can be applied proactively as well:

As code is re-structured over time, Lockheed Martin
seeks to reduce the amount of software that is “near” an
interface. For instance they push sensor and hardware
dependencies to the boundaries, and not allow them to
“infiltrate” the interior levels, to take advantage of this
approach.

• Exploit commonality and sharing wherever possible.
Whether testing activity happens inside or outside the
factory, every opportunity to eliminate testing-related
work that can be considered redundant should be taken.

From inception, one of the primary tenants of the CSL
was to maximize commonality so that savings could be
achieved in every part of the development process,
including test. Figure 9 shows how much commonality
exists across the Baseline 9 variants.

Figure 9: Commonality across Baseline 9 variants

Lockheed Martin uses its AEGIS requirements
database, also managed under the PLE Factory
paradigm, as input to catalog what capabilities are
shared across systems. If a requirement is shared, then
the software that implements it is also going to be
shared, and a candidate for exploiting commonality in
testing.

In addition to obvious candidates such as test processes,
and standard formats and mechanisms to capture test
results, Lockheed Martin reuses performance analysis,
an important and expensive process in large real-time
embedded systems, across the product line.

The certification process for AEGIS, carried out by the
Navy, uses a common set of test threads, applied across
all product instances. Test results are captured in a
DOORS database and provide objective evidence to
support test re-use.

In some cases it may be possible to structure a product
line into “clusters,” where products in a cluster have
more in common with each other than with products in
other clusters2. This may make it possible to at least
share testing across a cluster, offering significant
savings.

8. TESTING IN THE FACE OF CHANGE
Our story so far is that to minimize test cost under Feature-based
PLE, you must reduce outside-the-factory testing as much as
possible using any of the approaches listed in Sections 7.2 and 7.3

2 (Gears has the ability to represent this clustering in a structure called a

product family tree [21].)

that are available to you. The remaining testing must be done on
actuated products.

However, there’s another factor that needs to be taken into
account: Time.

Testing can be a long process for any system, but for AEGIS,
testing a new release can take up to a year and a half.
The world doesn’t stand still in that year and a half. While one
release is being tested, the next release is being developed, and
any defects in previous releases are being fixed..

By “release,” we mean release of the entire product line – that is,
the release of a new version of the shared assets, the feature
catalog, and the Bills-of-Features. A release captures new or
improved functionality that has been mandated by the governance
bodies for AEGIS that determine its development priorities over
time [9]. This is typically embodied within shared assets, but
there may be new features as well, captured in the feature catalog
and Bills-of-Features. With each new release, actuation is
performed to produce the products, or at least the products that are
taking the new release. Not every product is required to take
every new release; a particular product may have little need for
the new functionality, for instance, in which case they can wait for
a future release.

The product line’s shared assets and feature files are controlled in
various configuration management repositories to provide history,
version control, and reproducibility of the product line at specific
points in time.

8.1 BRANCHING
When testing begins for an upcoming release, the developing
organization needs a stable, relatively unchanging snapshot of the
product line to work with. Lockheed Martin, like many
development organizations, creates a branch to give them that
stable snapshot. Under Feature-based PLE, however, Lockheed
Martin branches the shared assets, the feature catalog, and the
Bills-of-Features. Product-specific PLE subsets (actuated
artifacts) are never used to create a branch. This is a crucial part
of the formula to minimize testing cost.
Put another way, branching only occurs inside the PLE factory.

Branching means to make a copy of an artifact so that special-
purpose development can continue in parallel with “main”
development activity. The “main” branch is called the trunk.

Before a branch terminates, the changes that were made either on
the branch, or in the mainline after the branch was created, are
merged. Merging means reconciling changes between a branch
and the branch from which it was created. Merging should be
done as soon as possible once development is complete since, as
the lifespan of a branch increases, the chances of conflicting
changes and potential magnitude and complexity of conflicts also
increase, and the effort therefore required to reconcile any
conflicts also increases.

Because copying and making changes to the copy is generally
antithetical to PLE principles, branching should be done with
extreme care and discipline to mitigate the effects of having
multiple copies in existence. A sure way to destroy the product
line’s value is to fail to be disciplined about merging after a
branch; the result is multiple copies of products with perpetual
lives of their own – exactly the untenable situation that led to the
move to PLE in the first place. Lockheed Martin and the US
Government, in concert, have put in place extremely strong
governance procedures and governing bodies that, among other
things, explicitly control when branches may be taken, the content

of each, and when new capabilities are ready to be merged into
the mainline. These policies are described more fully elsewhere
[9].

8.2 EVENT BRANCHES
When Lockheed Martin branches the factory in preparation for a
release, they create what is known as an event grooming branch,
or event branch3 for short. Event branches are used to create a
space where development can be “stopped” by isolating a stable,
production-ready set of PLE superset artifacts away from the
continued development taking place on the trunk (for example, on
new capabilities not needed in the upcoming release). Event
branches are used to support an upcoming test event or
certification. Work performed on an event branch for a shared
asset is focused on stabilizing the engineering of that asset needed
for the event, and includes updates to fix software bugs or
requirements defects. An event branch may be considered as a
sort of “off-ramp” from the highway, or trunk, to a stable release.

No new development is performed on an event branch. Bug fixes
and new development are performed back in the trunk. Only fixes
that are relevant to the event or required for certification, are
merged up into the event branch. The order of fixes is a matter of
convenience. The number of changes allowed in an event branch
is tightly controlled to ensure stability is maintained and to
minimize wasted effort (since the event branch will be
terminated). To maximize cost savings and speed to market (or
speed to field capability upgrades), the length and number of
event branches must be minimized and the frequency of releases
must be maximized.

Since different releases of AEGIS are in different states at any
point in time, there may be many event branches that need to be
managed to support test and ship events.

8.3 TAKING ADVANTAGE OF PAST
WORK
This strict change discipline, in conjunction with the Agile
approach that divides work to be done into small identifiable
chunks, makes it easy to chart what is new with each release.
This in turn makes it easy to focus testing activity on that new
content. Of course, regression testing is performed, but new
testing focuses on new content.

9. CUSTOMER SUPPORT FOR THE
APPROACH
The primary customer for AEGIS is, of course, the U.S.
Government, and they are keenly invested (figuratively and
literally) in this approach. They encouraged Lockheed Martin to
take the product line approach in the first place, using the motto
“Fix it once!” to encourage sharing of development effort. Now,
“Test it once!” is sending the same message when it comes to
sharing testing effort.
The Government eventually pays for the testing that Lockheed
Martin carries out, of course, and so money saved by Lockheed
Martin is money saved for the Government. Beyond that, the
Government also bears a direct cost burden for its own
participation in testing.

AEGIS systems are certified to go into operational service after a
lengthy process that begins with requirements reviews. Since the

3 This is similar to what some change management processes refer to as a
release branch.

CSL has multiple customers and the products have different
missions there is a large community of subject matter experts
involved in these reviews. Because Lockheed Martin is working
in a PLE, these reviews can be shared across the product line, just
like other test artifacts, and take advantage of commonality and
previous pedigree of design decisions, just like other test artifacts.
These saves the cost of Lockheed conducting many stand-alone
requirements reviews and gives the CSL Customers insight into
all changes that might affect their product.

Testing includes testing at LM and Government land based test
sites, at-sea testing, and extensive performance analysis. This
total cost to the Government of all of these activities, plus the cost
of test facilities, can nearly double the cost of fielding capabilities.
The commonality achieved from using the PLE process and
leveraging it when certifying multiple variants results in
significant cost savings. Individual certification for each variant
would require additional test facilities, laboratories, equipment,
and manpower that would be prohibitively expensive and directly
impact the amount of much needed new capability that could be
provided to the Sailor.

Finally, shipboard testing requires the participation of a ship.
Every minute a U.S. Navy cruiser or destroyer is being used to
field-test AEGIS is a minute when it is not fulfilling its primary
operational duties, duties for which its many billions of dollars in
cost were invested. Testing that fails to leverage previous test
results, let alone testing each variant of AEGIS once per ship, is
out of the question.

10. SUMMARY OF APPROACH
The over-arching goal of V&V is to be able to put a product into
service with a high (in the case of AEGIS, an extremely high)
degree of confidence that it will meet its requirements, which
include strict safety and performance requirements. In practical
terms, this means assembling a body of tests and artifacts that can
be inspected to show testing success.

From the point of view, then, of testing particular products, below
is a summary the steps we have laid out for testing in a Feature-
based PLE context. We assume that the PLE factory is up and
operating, and that a release is imminent.
1. When a major testing-related event is forthcoming, but as

late as practical, create an event branch4. The event might be
a release, or an important testing milestone activity. Until
then, keep all development on the respective mainlines or
“trunks” of all the shared assets, as well as the trunks of the
feature catalog and the Bills-of-Features.

2. Continue any development work that is targeted only at the
upcoming event, updating the shared asset supersets, feature
catalogue, and Bills-of-Features as needed, on the event
branch. (The goal of branching as late as possible is to keep
as much work as possible on the trunks.)

3. Begin testing. Perform whatever tests are feasible on this
new development, inside the factory. Use the criteria
enumerated in Sections 7.3:

a. Carry out standalone testing
b. Carry out testing of functional groups

4 A Branch/Merge plan for AEGIS, from which Error! Reference source

not found. is taken, is managed jointly by Lockheed Martin and the US
Government, and establishes the schedule for this.

c. Assess consequences of defects
d. Assess past pedigree
e. Assess sensitivity to context
f. Exploit commonality and sharing wherever

possible

4. For each product variant that will participate in the upcoming
event:

a. As close to the release date as practical, in order to
maintain shared artifacts for as long as possible,
actuate to create the variant.

b. Create a test “pedigree” for the variant.

i. Capture the testing that was done inside
the factory, whether on the event branch
or back on the trunk.

ii. Capture testing that was done that applies
across an entire cluster to which this
product belongs (see Section 7.3).

iii. Executing the remaining tests on the
actuated product and record the results.

5. After the event for which the event branch was created
concludes, terminate the event branch.

11. CONCLUSIONS
Testing can be a long and expensive activity for any system,
especially for systems as large and complex as AEGIS, where
testing can approach half of the overall cost of fielding a system.
Thus, any success in reducing the cost of testing activities yields a
directly observable reduction in the overall cost of a fielding a
new system.

In this paper we have shown how a large, complex, in-service
product line is using PLE to reduce the cost of verification and
validation activities. The central idea is to share (and therefore
leverage) V&V activities across as many product variants as
possible. Key principles discussed include:

• Share all assets and activities as much as possible,
beyond just mainstream testing. This includes
requirements reviews of all types, as well as
performance analysis. Both of these can be time-
consuming and complex, and by focusing on the
common parts of systems, both can be substantially
reduced.

• Decreasing testing activity by testing as much inside the
PLE factory (that is, before product instances are
created by the configurator) as possible.

• Exploit commonality wherever possible. Functionality
that appears in more than one system should, to the
extent possible, be tested once instead of once per
system.

• Use branching policies to establish stable spaces where
testing can be performed away from the instability of
ongoing development.

• Keep things as common as long as possible. Delay
branching and delay actuation as long as practicable.

These principles and approaches apply throughout all the test
levels shown in Figure 7, from the software level up through
system integration test and, ultimately, certification.

AEGIS employs a notion of “lead” and “follow” configurations
where the follow configuration leverages the maximum amount of
testing at all levels from the lead configuration. This ensures that
test efforts are not replicated, by leveraging testing already
completed or underway in similar configurations. Follow-on test
efforts focus on testing specific to areas of functional or
configuration differences, and do not repeat testing that is
applicable across all configurations. This tailoring effort takes
into account risk and change areas of functionality in follow on
configurations, as well as the goals of test efficiency and
affordability. Regression testing is performed for the other
configurations as required.

The test approach presented allows for optimization of testing and
test resources across multiple product instances without
unnecessary overlap of test efforts. The test pedigree of one
product line baseline enables reduced testing on subsequent
baselines.
An unintended consequence of utilizing PLE for a large complex
system is that the code base is continually being system tested. In
the AEGIS case new development being done in the CSL
uncovers bugs in the previously written code. These defects are
addressed in the CSL trunk and included in the next release. This
continuous testing and branching of new releases leads to fielding
of higher quality systems.

PLE enables a “Build it once” (and therefore “Fix it once”)
capability. This capability has now evolved into “Test it once!”
and is providing simultaneous levels of reliability and
affordability that would not otherwise be available. Overall cost
avoidance of some $47 million per year with the AEGIS PLE
approach were reported in [8]. That figure results from sharing of
requirements and software development work. In light of the fact
that testing costs approach development costs in magnitude, and
the very same sharing mechanisms are being brought to bear in
testing as in development, it is reasonable to infer that cost
avoidance from shared testing is commensurate with cost
avoidance from shared development.

12. REFERENCES
[1] BigLever Software, “BigLever Software Gears,”

http://www.biglever.com/solution/product.html
[2] Bolander, B., Clements, P., Krueger, C. “It Takes a Village:

Why PLE Technology Solutions Require Ecosystems of PLE
Technology Providers,” 26th Annual INCOSE International
Symposium (IS2016), Edinburgh, July 18-21, 2016.

[3] Brownsword, L., Clements, P. A Case Study in Successful
Product Line Development (CMU/SEI-96-TR-016,
ADA315802). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996.
http://www.sei.cmu.edu/publications/documents
/96.reports/96.tr.016.html.

[4] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J., and Winkler, A., “Second
Generation Product Line Engineering Takes Hold in the
DoD,” Crosstalk, The Journal of Defense Software
Engineering, USAF Software Technology Support Center,
2013.

[5] Clements, P., Krueger, C., Shepherd, J., Winkler, A. “A
PLE-Based Auditing Method for Protecting Restricted
Content in Derived Products,” Proc. 2013 Software Product
Line Conference, Tokyo.

[6] Firesmith, D., “Using V Models for Testing,” SEI Blog,
Software Engineering Institute, Carnegie Mellon University,
https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-
models-for-testing.html, November 2013.

[7] Gregg, S., Scharadin, R., Clements, P. “The Best of Both
Worlds: Agile Development Meets Product Line Engineering
at Lockheed Martin,” 26th Annual INCOSE International
Symposium (IS2016), Edinburgh, July 18-21, 2016.

[8] Gregg, S., Scharadin, R., Clements, P. “The More You Do,
the More You Save: The Superlinear Cost Avoidance Effect
of Systems and Software Product Line Engineering,” Proc.
SPLC 2015, Nashville.

[9] Gregg, S., Scharadin, R., LeGore, E., Clements, P. “Lessons
from AEGIS: Organizational and Governance Aspects of a
Major Product Line in a Multi-Program Environment,”
Proceedings, Software Product Line Conference 2014,
Florence, Italy, 2014.

[10] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study” (CMU/SEI-90-TR-021, ADA235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon
University, 1990.

[11] Krueger C., Clements, P., “Second Generation Product Line
Engineering: A Case Study at General Motors,” in Systems
and Software Variability Management: Concepts, Tools, and
Experiences, Capilla, Bosch, and Kang, eds., Springer, 2013.

[12] Krueger, C. and Clements, P. “Systems and Software
Product Line Engineering,” Encyclopedia of Software
Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013.

[13] Lanman, J., Kemper, B., Rivera, J., Krueger, C., “Employing
the Second Generation Software Product-line for Live
Training Transformation,” Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC) 2011.

[14] Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco.
Software Product Lines in Action, Springer, 2007.

[15] Lockheed Martin, “Common is Anything But Boring: How
Lockheed Martin Engineers Make Breakthroughs between
Baselines,”
http://lockheedmartin.com/us/news/features/2016/160706-

Common-Anything-But-Boring.html, downloaded October
2016.

[16] Lockheed Martin, “Lockheed Martin to Bring Aegis Ballistic
Missile Defense to Latest U.S., Korea and Japan Destroyers,”
http://www.lockheedmartin.com/us/news/press-
releases/2016/august/160815-mst-aegis-ballistic-missile-
defense-to-latest-us-korea-and-japan-destroyers.html, August
2016.

[17] Lockheed Martin, “Common Source Library (CSL) Test
Process,” AEGIS Program Technical Memorandum AP-C-
SYS-T-2006, revised 9 June 2014.

[18] Naval Surface Warfare Center, “AEGIS Combat System,”
http://www.navsea.navy.mil/nswc/dahlgren/ET/AEGIS/defau
lt.aspx

[19] Pohl, K., Böckle, G., van der Linden, F. Software Product
Line Engineering: Foundations, Principles, and Techniques,
Springer, 1998.

[20] RTCA, Inc., DO-178B Software Considerations in Airborne
Systems and Equipment Certification, issued 12/1992,
available from
http://www.rtca.org/store_product.asp?prodid=581.

[21] Rubinstein, D., “BigLever draws ‘family trees’ in Gears,” SD
Times no. 292, August 2013.

[22] Software Engineering Institute, “Benefits and Costs of a
Product Line,”
http://www.sei.cmu.edu/productlines/frame_report/benefits.c
osts.htm

[23] Software Engineering Institute, “Catalog of Software Product
Lines,”
http://www.sei.cmu.edu/productlines/casestudies/catalog/ind
ex.cfm

[24] Software Product Line Hall of Fame, “Lockheed Martin:
U.S. Navy Aegis (Weapon System),”
http://splc.net/fame/lockheed.html, downloaded January
2017.

[25] Software Product Line Conference (SPLC) Product Line Hall
of Fame, http://splc.net/fame.html.

[26] Wozniak, L., Clements, P. “How Automotive Engineering Is
Taking Product Line Engineering to the Extreme,” Proc.
SPLC 2015, Nashville, 2015.

