

A PLE-Based Auditing Method for Protecting Restricted
Content in Derived Products

Paul Clements
Charles Krueger
BigLever Software

10500 Laurel Hill Cove
Austin, Texas 78730 USA

+1 512 426 2227
pclements@biglever.com
ckrueger@biglever.com

James Shepherd
Andrew Winkler
Lockheed Martin

199 Borton Landing Road
Moorestown, New Jersey 08057 USA

+1 609 326 4685
james.t.shepherd@lmco.com
andrew.j.winkler@lmco.com

ABSTRACT
Many organizations that produce a portfolio of products for
different customers need to ensure that sensitive or restricted
content that may appear in some products must not appear in
others. Examples of this need include complying with statutes in
different countries of sale, protection of intellectual property
developed specifically for one customer, and more. For
organizations operating under these requirements and producing
their products under a product line engineering paradigm that
relies on automation in product derivation, there is a need for a
method to ensure that the content restrictions have been met in the
derived products. This paper describes an auditing method that
meets this need. It was created for use in the Second Generation
Product Line Engineering approach that is being applied by
Lockheed Martin in their AEGIS ship combat system product line.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line engineering,
software product lines, feature modeling, hierarchical product
lines

General Terms
Management, Design, Economics.

Keywords
Product line engineering, software product lines, feature
modeling, feature profiles, bill-of-features, hierarchical product
lines, variation points, product baselines, product portfolio,
product configurator, product derivation, product audit, second
generation product line engineering

1. Introduction
A significant challenge for many product line engineering (PLE)

organizations is verifying that capabilities and content restricted
for use to a limited class of products is not inadvertently leaked
into other products outside of this limited class. Examples of this
problem include:

• Statutory compliance: In PLE organizations that sell
products in different countries, legislative differences might
require a capability by law in one country and forbid that
same capability under the laws of another country. For
example, daytime running lights on automobiles are required
in Scandinavian countries, but not allowed in Japan [3].

• IP protection: In PLE organizations that create custom
product instances for different companies, a custom or
license-restricted capability paid for by one customer might
represent protected intellectual property that must never be
used in the products sold to another company.

• International Traffic in Arms: In PLE organizations that
create military or national security products that are sold in
multiple countries, the government of the country where that
PLE organization resides may have strict laws on the types of
capabilities that can be exported to countries around the
globe (for example [6]).

• Classified information protection: In PLE organizations
that produce military systems that involve classified
information, it may be necessary to strictly segregate that
information away from scaled-down versions of the system
that do not use the classified content.

The cost of inadvertently leaking restricted content can be
extraordinarily high. Because these restrictions are often based on
public safety laws, government use rights, or intellectual property
laws, mistakes can result in large fines or legal judgments,
protracted court cases, negative media coverage that damage the
reputation of a brand, or (in extreme cases) even prison time.

In this paper we describe a method for verifiably protecting
restricted content in product instances under the Second
Generation Product Line Engineering (2GPLE) approach
[2][3][5]. This work is based on industry experience with the
AEGIS ship combat system, engineered by Lockheed Martin
Mission Systems and Training Division using 2GPLE tools and
methods, as well as experiences with other commercial 2GPLE
practitioners. The AEGIS Combat System is an integrated warfare
system deployed on over 100 naval vessels in the U.S. Navy and
the navies of key U.S. allies across the globe. The issue of
protecting restricted content is a critical concern in the AEGIS
ship instances built for a diverse customer base..

(c) 2013 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an employee,
contractor or affiliate of the United States government. As such, the
United States Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SPLC 2013, August 26 - 30 2013, Tokyo, Japan

Copyright 2013 ACM 978-1-4503-1968-3/13/08…$15.00.
http://dx.doi.org/10.1145/2491627.2491629

Figure 1. The AEGIS destroyer USS Hopper (DDG 70)

launches a missile to intercept a short-range ballistic missile.
(U.S. Navy photo/Released)

2. Auditing Products for Capabilities and
Content

Product line approaches often appear to characterize the portfolio
of features and capabilities integrated into the product line as
unvarying in their inherent applicability and sensitivity: Any
feature can appear in any product. However, modern production
environments include a great diversity in the origins, applicability,
and often legality associated with the assembly of some sets of
features and capabilities. A global marketplace and a diverse
customer set introduce a myriad of additional considerations to
managing a product line. An assessment to address these
considerations can result in some product instances that are
technically feasible but not viable as a product due to restricted
content. This is especially true in products that include
international stakeholders or customers who require that their
indigenous products include components that they themselves
provide but which must not be divulged to any other customer.

Product engineering based on one-of-a-kind products, clone-and-
own, or even first generation PLE with its well defined
application engineering silos support the need to isolate, validate
and protect the restricted content in each individual product. In
product silo approaches, ad hoc techniques for one-time manual
inspection of content or automated scrubs of code and documents
looking for sensitive terminology (keywords that suggest the
presence of sensitive content) are often used, and can be
sufficient. Once the product is created and scrubbed,
considerations for restricted content become a tertiary concern,
since those concerns can be addressed each time the product is
changed, by making sure that the changes respect the restrictions.
Hence, it is only necessary to perform the whole-product scrub
(which can be quite labor- and time-intensive) once.

How do these product-centric auditing methods work? That is,
how through the product line lifecycle development can
stakeholders of these concerns (e.g., product line managers, legal
experts, configuration managers, quality control managers) be
sure that a given product line instance satisfies any restrictions?
The key is the ability to assess the presence of restricted content
over the course of the lifecycle through capability auditing.
A capability audit is a focused form of quality audit. Quality
audits are “performed to verify conformance to standards through
review of objective evidence. A system of quality audits may

verify the effectiveness of a quality management system. Quality
audits are essential to verify the existence of objective evidence
showing conformance to required processes, to assess how
successfully processes have been implemented, for judging the
effectiveness of achieving any defined target levels, providing
evidence concerning reduction and elimination of problem areas
and are a hands-on management tool for achieving continual
improvement in an organization” [7]. A capability audit is exactly
this, focused on the singular “quality” of correct use of restricted
content.

A “product manifest” is a useful technique to aid in auditing.
Used across the different stages of the lifecycle, a manifest
provides a set of checks and balances at different points of
production and to provide an auditable paper trail so the source of
“leaks” can be pinpointed. A manifest makes the executable
image of an individual products derived from the product line
self-documenting in terms of the origins of its content. The
manifest describes the specific origins, heritage, and configured
set of product line capabilities is thus included in each executable.
Access to the manifest is of particular usefulness in engineering
and integration environments where multiple product line
executable instances, representing varying customer perspectives,
may coexist.

Figure 3 shows useful audit points where manifest data associated
with each executable is collected. Each executable exposes an
executable fingerprinting method such as the Unix “what” utility,
which can be invoked to expose the manifest. Each column in the
figure represents a step in the creation and establishment of a
specific product line instance in executable form. Software library
labeling (such as ClearCase™ version labeling, used by AEGIS)
is used to designate a set of software files representing a product
specific instance and generation. That label is applied during
product production to select and assemble, at the file level,
common core and capability software versions, installing them
into individual product-specific libraries. ClearCase labeling is
again used to designate all the software content representing this
specific product instance. The tar utility is then used to facilitate
the accumulation of all the specific executables, libraries, and
configuration files comprising the product instance. Following
product installation, an executable fingerprinting utility can be
used to access the metadata on a per-executable basis.

The manifest ultimately contains the information that is listed in
Figure 2.

In addition to carrying its own parts manifest, engineers
concerned with restricted content in products also use a
comprehensive search for any customer sensitive terminology in
which all the artifacts associated with a product (but principally its
source code) are searched for keywords that would suggest the
presence of illegal content. These searches for restricted content
are fairly straightforward to carry out, but are labor-intensive. On
AEGIS, whose product instances are very large and complex, they
can consume up to 30 staff-months of effort. They suffer from a
plethora of false positives that must be weeded out individually.
They also are problematic if the right keywords are not included
in the search list, allowing restricted content to slip by.

As we noted, these techniques suffice for product-centric
approaches; they are applied essentially once when the product is
built and then to each change to the produce thereafter. If every
release of every product to every customer has to endure these
complete scrubs, these methods become unsupportable and would,
for all intents and purposes, break the product line.

Figure 2 Typical contents of a product manifest, carried along

in the product itself. For a manifest that documents the
pedigree of software, the manifest is viewable by running a

utility on the software’s executable image.

3. Second Generation Product Line
Engineering (2GPLE)

To understand the approach to capability and content auditing that
we present in this paper, it is necessary to understand the basic
tenets of the Second Generation Product Line Engineering
(2GPLE) approach [2][3][5] employed by Lockheed Martin for
the AEGIS program. Table 1 gives a brief summary of the four
aspects of 2GPLE that are most germane to our audit approach.

Figure 4 illustrates the basic concepts of 2GPLE. Shared assets
on the left (only a few examples of which are shown) are imbued
with variation points (denoted by the gear symbol). The variation
points are defined in terms of features. A feature profile,
describing a product in terms of the features it exhibits, is fed to
the product configurator, which configures the shared assets by
exercising their variation points to produce a suite of asset
instances specific to that product.

Because products are automatically generated, restricted product
content is automatically configured into a product instance based
on feature selections for the product and the mapping from feature
selection to asset content selection used by the PLE configurator.
Product instance development, evolution, fixes and enhancements
are achieved by updating the feature selections or updating the
shared PLE assets and then regenerating.
Most germane to the topic of auditing, 2GPLE re-generates any
product to which a change is made. Contrast this to the product-
centric (or even first-generation product line engineering)
approaches in which a product, once derived, enters its own
independent maintenance trajectory. If the “brute force” methods
described in the previous section were all that were available to
us, then under 2GPLE the cost of auditing would be prohibitive
during a normal maintenance lifecycle, as it would have to be
repeated with each re-generation, which would occur with each
change.

Figure 3 Potential audit points for product instances (© Lockheed Martin)

 Component Name
 Product Line Software Library Label

 Configuration Management Label
 Product Instance Software Library Label

 Configuration Management Label
 List of Features

 Included in the specific product
executable being audited

 Build Time
 Build Information

Table 1 Aspects of 2GPLE germane to our audit method

Aspect of 2GPLE How it relates to
audit

Feature based: Products are described by
the features that they exhibit, not (for
example) by the parts that go into their
construction. Following FODA [4], a
feature is a distinguishing characteristic
(often customer-facing) that sets one
product apart from others. Features are
captured in a feature model, which
represents a set of choices available about
each product. A feature profile is the set of
feature choices actually made to define an
individual product.

For example, a feature model for an
automobile might capture the fact that
daytime running lights are available as low-
beam headlights, or via the parking lights,
or through special lamps dedicated to the
purpose, or not on the car at all. A feature
profile for a car would select one of these
options [3].

In our approach to
content protection,
we will use
features to
represent the
capabilities that
must be avoided
in some products.

All-asset perspective: In the systems and
software engineering world, products
comprise a number of artifacts that define
their development and use. These artifacts

Our approach was
crafted in the
context of code as
the primary

include a broad array including
requirements, design models, code, tests,
user manuals, project management plans,
blueprints, and many more. In 2GPLE,
these artifacts are made generic – that is,
applicable to every product – and thus
become shared assets. In software product
line engineering software enjoys the most
attention and focus, but in 2GPLE all assets
are first-class citizens. In fact, the products
need not include software at all.

delivered content,
but because of
2GPLE’s all-asset
perspective, we
believe it applies
equally to any
combination of
assets.

Variation points: A shared asset is made
generic across products by imbuing it with
variation points, which are places in the
asset where product-specific choices are
inserted. In 2GPLE, the choices are
expressed in terms of features, not directly
referencing any product. In this way, the
assets remain generic and can be re-used
without change in any new product that is
simply a new combination of already-
existing features. Variation points come in
a small and consistent set of forms, such as
• omitting or including the asset;
• selecting one variant file from an

available choice of several, to serve as
the product-specific instance;

• performing text substitution inside the

As we’ll see, our
method uses
variation points as
a key focus of
auditing attention.
Each piece of
restricted content
(for example, a
requirements
passage, or a
section of source
code) is
“protected” by a
variation point;
exercising the
variation point
will either include

Figure 4 Basic concepts of Second Generation Product Line Engineering: shared assets configured according to feature profiles by a
product configurator – in this case, Gears [1] (© BigLever Software)

asset; and including, omitting, or
• choosing from among blocks of

contiguous material inside the asset.

or exclude the
restricted content.

Automated product derivation: The
means of product derivation in 2GPLE is
the mechanism that exercises the assets’
variation points to produce configured
versions that, together, constitute the artifact
set for one of the products in the product
line. The automation is called a
configurator, which takes a feature-based
description of a product (that is, a feature
profile) and configures all of the assets (by
exercising their variation points) to produce
instances for that product.

The configurator needs to be able to support
the construction and management of feature
models (including feature declarations,
assertions, and profiles), assets and their
variation points, and represent the logic that
maps from feature choices to asset
instances.

In our approach,
the configurator in
use provides
useful information
about our product
line that relates to
auditing
assurance. For
example, it will
report any feature
that is defined but
never referenced,
suggesting that
somewhere a
variation point
that should have
referred to it is
amiss.

4. Classification of content violation errors
Understanding the basic tenets of 2GPLE enabled us to produce a
classification scheme for the ways in which a content restriction
violation could occur. There are two cases:

1. Restricted content is not correctly identified and demarcated
as such. An example of this is when restricted content
incorrectly shows up in a part of the source code believe to
be common (that is, used in every product). Under our
2GPLE approach, demarcation happens when the part of the
asset containing the restricted content is placed inside a
variation point, and thus able to be included in some products
and excluded from others.

2. Restricted content is correctly demarcated but not correctly
chosen for use in products. This second possibility can occur
in three forms, given our 2GPLE approach:

a. Features are modeled incorrectly: For example, a
restricted capability is not modeled as a feature,
and so cannot be chosen for inclusion or exclusion
from a product.

b. The feature profiles are wrong. This occurs when a
feature representing a restricted capability is
chosen for a profile corresponding to a product in
which the restricted content is forbidden.

c. The logic for exercising the variation point is
wrong. This occurs when the logic refers to the
wrong features, or the logic itself is flawed. An
example of the latter is when the logic expression
that is some Boolean combination of feature values
evaluates to true (and includes the restricted
content) when false was intended.

Case 1 and Case 2 together partition the space of content violation
errors, and in the case of the 2GPLE constructs we are using, the
three possibilities under Case 2 enumerate all that can go wrong
(other than tool failure): Either the features, the feature profiles,

or the variation points are wrong. If our audit method can
address each of these causes, we will have increased confidence
of its robustness because it addresses each type of error.

Our classification scheme does not delve into cause, but merely
effect. The source of one of these errors could be accidental, or
malicious, and introduced at different times throughout the
engineering process. Root cause analysis is not the point here;
rather, the point is to try to catalog the errors to ensure that our
auditing method intercepts each kind.
Our classification scheme, which will rely on inspection in places,
does assume that we can recognize restricted content in an asset
when we see it, which we believe is a reasonable assumption.
Current practices assume the same thing, so we will not be less
effective because of this assumption.

5. Audit Method
With the addition of international customers to the AEGIS family
engineered under 2GPLE, the issue of verifiabily protecting
content has taken center stage as an area of concern. Some
AEGIS capabilities are targeted to specific customers only.
Lockheed Martin has endeavoured to put in place safeguards that
can demonstrate with high confidence that any limitations in the
applicability of these capabilties are being. met. Lockheed
Martin, for its part, wanted to put in place an audit method that
was practical under the 2GPLE paradigm that enables rapid re-
generation of any product at any time. The audit method we
present in this paper emerged as a result.
Our method comprises three separate parts or stages:

1. Careful construction. This involves creating a set of
best practices and style guides for the construction of
the shared assets and feature models that will serve as
the basis for the entire product line. The idea is to
engineer the product line correctly (with respect to
meeting content restrictions) from the start.

2. Inspect the construction. This stage involves auditing
and reviewing the product line as constructed.

3. Inspect the product. A produt is built by actuating the
shared assets against the feature profile for that product..

These stages are elaborated below. We also describe the
capabilities of the particular configurator tool we are using, but
discuss alternative approaches in case your configurator tool does
not have the cited capability.

Stage 1: Careful construction
In Stage 1, best practices are codified in the form of style guides
that engineers can use to do their work in building the product line
– specifically, building the feature models and feature profiles,
and imbuing the shared assets with variation points.

Table 2 enumerates the steps of Stage 1 and shows what parts of
the content classification each one addresses. It also shows what
capabilities of the configurator are assumed, if any.

If Stage 1 is carried out correctly, then no restricted content will
be incorrectly included in any product not authorized to receive it.
Stages 2 and 3 represent validation steps to catch any defects that
slipped through Stage 1.

Table 2 Steps of Stage 1

Stage 1 Steps Concerns
addressed

Configurator
capabilities

used

Fallback if
capability

not
available

Sound engineering practices
Ensure by sound
engineering
practices (e.g.,
documented
guidance, peer
review) that no
restricted content
is inadvertently
put in a place it
doesn’t belong –
e.g., in a common
part of an asset,
or in an asset that
will be used in a
non-qualifying
product.

1 None N/A

Steps concerned with feature modeling
Each restricted
capability should
be modeled as a
feature.
Each criterion
that can define a
content violation
(for example,
country of
destination)
should be
modeled as a
feature.

2a Basic feature
modeling N/A

When building a
feature profile,
ensure that no
illegal
combinations are
selected.

2b Basic feature
modeling N/A

Write feature
assertions that
exclude illegal
combinations of
capability
features and
destinations1.

2b

Ability to write
feature

assertions that
must not be

violated in any
product

Rely on
manual

inspection.

Steps concerned with assets and variation points
Each asset is
chosen correctly
for each product. 1

2c

Construction of
variation points

in shared
assets, and

logic to
exercise the

None Each block of
restricted content
within an asset is

1 Feature assertions represent a redundant quality mechanism. If

no illegal feature profiles are created in the first place, feature
assertions will never be violated, and can be said to have no
effect. However, they represent an insurance policy against
anyone creating illegal profiles in the future.

contained in a
variation point.

variation points
based on

feature values.
Ability to place

specific
messages in
the actuation

report.

The logic
controlling each
variation point
correctly includes
or excludes the
restricted content
based on feature
values.
The logic
conrolling each
variation point
includes an
output statement
in the actuation
report that says
whether restricted
content was, or
was not, included
in the instance of
the asset.

Stage 2: Inspect the Construction
In Stage 2, basic Quality Assurance techniques are employed to
ensure that the practices prescribed in Stage 1 have been followed.
The Engineering Review Board, already in place for AEGIS to
enforce high quality system engineering practices, takes on
additional scope to check that the product line is sound with
respect to protecting restricted content.

While most of the work involves basic reviewing, the configurator
can support certain parts of the task. Suppose that a source code
file has a variation point in it that consists of two separate blocks
of code. Suppose further that any product will contain exactly one
of the blocks but the other will be removed. There must be logic
to indicate which block is chosen and which is removed when the
appropriate feature conditions apply. If the logic is stored
separately from the blocks, then there must be a way for the logic
to refer to the blocks – that is, the blocks must be named. This
introduces the possibility of an error in which the logic writer
mistypes the name of the block to be removed, thus potentially
allowing restricted content into the wrong product2.

Table 3 describes the verification steps of Stage 2 of our audit
method.

The configurator at the heart of the 2GPLE paradigm is not only
the engine that generates (and re-generates) product instances, but
some configurators also can help in the audit task. It could detect
any block name not referenced in the asset’s logic file, and any
block name mentioned in the logic that does not occur in the asset,
thus helping to detect mis-typed block names. The tool could
also check to see that every feature was used in a logic file
somewhere, thus ensuring that it has a role in configuring at least

2 This possibility exists even if asset instantiation is done not with

a product configurator, but the simple #ifdef construct. The
#ifdef statement refers to a variable that is #define’d (or not)
elsewhere based on product-specific conditions. Thus, #ifdef
also separates the controlled blocks from the logic that controls
it. If the variable name is mistyped, the #ifdef has no effect.

one asset. And it could check to make sure that an asset that is
treated as common to all products contains no variation points.
These checks could be done manually, but are extremely tedious
and, in product lines of any size, impractical. In Gears [1], the
configurator chosen by use by AEGIS, this kind of checking is
provided by a service called a Deep Semantic Audit. A Deep
Semantic Audit provides a variety of information about the
product line that has been defined, including the existence of
possible anomalies that might warrant investigation. An example
is an element (such as a feature) that has been defined but never
used.

As with Stage 1, if all of the steps of Stage 2 are carried out
correctly, then no product will have any restricted content that it is
not authorized to contain.

Table 3 Steps of Stage 2

Stage 2 Steps Concerns
addressed

Configurator
capabilities

used

Fallback
if

capability
not

available
Check that Stage 1
steps have been
correctly carried out:
• All restricted

capabilities are
modeled as
features

• The feature
profile for a
product includes
no feature that
represents a
forbidden
capability

• Feature
assertions are in
place to rule out
any forbidden
capability/destin
ation
combination

• All restricted
content is
“protected” by a
variation point
in an asset that
references the
correct features
that, when
selected, allow
the content to be
included in a
product and
excluded
otherwise

• Every variation
point in every

1
2a
2b

(as for
Stage 1)

None N/A

asset includes
selection logic
that puts a
message in the
actuation report
to indicate that
restricted
content is or is
not being put
into the
generated
instance.

Ensure that block
names are not mis-
typed, thus
undermining their
meaning

2c Deep
Semantic
Audit, an
automated
analysis of
the entire

product line
to report

anomalies,
such as block
names in an

asset not
mentioned in
logic or block

names in
logic that

don’t occur in
an asset

Manual
check or
script-
based

check to
compare
variation

point
names
with

names in
logic, to

search for
variation
points in
common
files, to

search for
unused

features,
etc.

Ensure that no
variation points occur
in common files

1

Ensure every defined
feature is used in at
least one variation
point

2a

Stage 3: inspect and Analyze the Product
Whereas Stage 1 and Stage 2 applied to the product line at large,
Stage 3 involves building and inspecting a product. In Gears the
step of building a product is referred to actuation, which produces
a product-specific set of asset instances by configuring their
variation points according to the features of the product. After
actuation, Stage 3 involves inspecting the product to make sure
that, despite our best efforts in Stages 1 and 2, no restricted
content has been improperly included.

Table 4 Steps of Stage 3

Stage 3 Steps Concerns
addressed

Configurator
capabilities

used

Fallback if
capability

not
available

Review the
actuation report
to look for the
embedded
sensitive-content
messages. Make
sure that no
messages are
found that report
unexpected

All

Produce a
report

describing the
variation points
exericsed, and
how, during

actuation

None

restricted content
in the product
Perform a scrub
for sensitive
terminology
(keyword search
in the product’s
artifacts; inspect
the product’s self-
documenting
manifest

All

None; these
steps are

performed by
tools outside

the configurator

N/A

The second step of Stage 3 is, essentially, a repeat of whole-
product scrub that we described in Section 2. Recall that we said
that this “brute force” scrub was too expensive and labor-intensive
to be performed every time a product is generated or re-generated
in the face of change. In our audit method, this step represents a
last, redundant step of assurance before an actual customer
delivery. In the AEGIS program, these do not happen often, and
the program can support carrying this out on those occasions.
This step will not be performed when products are generated
during the development cycle (for example, during functional
testing), and so the overhead is not considered prohibitive.

6. Conclusions and next steps
There are many circumstances under which careful auditing of
products is vital to ensure that no restricted content is included in
a product that is not qualified to receive it, because the cost of
committing a statutory violation or failing to protect IP can be
enormous. Organizations that wish to use the Second Generation
Product Line Engineering paradigm, which is gaining wide
acceptance for industrial-strength product line applications, must
have a way to ensure that the generated products respect content
rules.

This paper offers as its contribution an elaboration of the 2GPLE
approach, in the form of an auditing process for derived products.
This aspect of 2GPLE was previously missing.

The audit method we have presented has the following
characteristics:

• It is based on careful consideration of the kinds of errors in a
2GPLE setting that can lead to a violation, and it has multiple
steps that specifically address each error type.

• It relies on sound engineering and, in places, manual
inspection, neither of which is immune to human error;
however, to compensate, it takes a redundant “belts,
suspenders, and shoelaces” approach that applies multiple
remediation steps to cover each kind of error.

• Where helpful, the method relies on capabilities of the
particular configurator in use on the AEGIS project, but
where those capabilities might be considered unusual we
have outlined fallback procedures for use in those cases in
which a less capable configurator is in use.

• It is teachable, comprising three intuitive stages – build the
product line correctly, review the product line that was built,
then build and review any product being delivered – and a
set of specific steps for each stage in checklist form.

• It was crafted to work for source code assets, but could be
applied equally well to any kind of documentation-based
artifact that (through the use of feature-based variation

points) occurs in product-specific instances. Thus, the
method is suitable for use with assets across the lifecycle.

• It incorporates current best practices in product-based
auditing, such as a self-carrying manifest and keyword
scrubs, as a last-ditch safety net.

The audit method was created to prevent restricted content from
making its way into products forbidden to receive it. However,
there is an interesting “reverse case” that often arises as well: A
customer insists that some of its homegrown content be inserted in
its product. This so-called “indigenous material” presents a case
in which content must be included rather than excluded in a
product (although it likely must be excluded from all the other
products). The audit method can be straightforwardly adjusted to
work for this case as well.

One outcome of the work is to show that 2GPLE can, in fact,
produce auditable products. Features provide a good proactive
protection mechanism that sets the stage from the beginning for
representing restricted capabilities. Variation points, expressed in
terms of features, are therefore also expressed in terms of the
capabilities that need to be controlled. Thus, expressing when a
capability must be included or excluded is as straightforward as
can be using 2GPLE’s feature-based variation approach.
The method has not yet been applied throughout AEGIS so there
is no empirical data to present with respect to its cost and its
relative effectiveness compared to present-day approaches. We
can, however, reason about these important concerns:

• With respect to effectiveness, because it includes the
currently used approaches (keyword search and product
content manifests) applying our method can only be more
effective, not less, than current practice.

• With respect to cost, the Stage 1 steps represent a best-
practices approach for building a high-quality product line
that respect content restrictions, becoming an inherent part of
the product delivery lifecycle. These steps can be codified in
style guides for product line engineers to follow when
building their feature models, profiles, and variation points,
and would be adopted as a quality improvement approach
even if no auditing were involved at all. Additionally, the
last step of Stage 3 represents today’s approach. Therefore,
the marginal cost brought about by the method is the Stage 2
inspections (several of which are or could be carried out by
the configurator) and, in Stage 3, the examination of the
actuation report (a step of almost zero cost).

A next step is to gather actual cost and benefit data for applying
the method throughout the AEGIS program on product versions.
Another next step (one that is specific to source code) is
envisioned to provide still one more layer of protection and added
confidence: It should be possible to modify the compiler’s lexical
scanner and parser to have it look for keywords associated with
restricted content. This would provide a parallel approach that can
be thought of as add baling wire to the belt, suspenders, and
shoelaces of the audit method we have presented.
Our expectation is that the auditing approach for features and
capabilities presented in this paper will quickly become the
routinely used and preferred approach for auditing of product line
in the customer pre-delivery context. An enhanced keyword
scanning utility, optimized for scanning the content of common
product line, including supporting features, would also be
introduced, with the goal of reducing the search time from weeks
to hours, mainly by reducing the number of false positives

reported by brute force searches. The role of this modified
scanning utility would be relegated strictly as a last-measure
gating criterion each time a product needs to be delivered to a
customer site (be it a lab or a ship). The rest of the audit method
presented in this paper would do most of the work.

7. Acknowledgments
Glenn Meter of BigLever Software played a valuable role in
helping to create the approach presented in this paper. Bob Mirto
and Susan Gregg provided helpful reviews.

8. References
[1] BigLever Software, “BigLever Software Gears,”

http://www.biglever.com/solution/product.html
[2] Clements, P., Gregg, S., Krueger, C., Lanman, J.,

Rivera, J., Scharadin, R., Shepherd, J., and Winkler, A.,
“Second Generation Product Line Engineering Takes
Hold in the DoD,” Crosstalk, The Journal of Defense
Software Engineering, USAF Software Technology
Support Center, 2013, in publication.

[3] Flores, R., Krueger, C., Clements, P. “Mega-Scale
Product Line Engineering at General Motors,”
Proceedings of the 2012 Software Product Line
Conference (SPLC), Salvador Brazil, August 2012.

[4] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson,
A. “Feature-Oriented Domain Analysis (FODA)
Feasibility Study” (CMU/SEI-90-TR-021,
ADA235785). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1990.

[5] Krueger, C. and Clements, P. “Systems and Software
Product Line Engineering,” Encyclopedia of Software
Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013, in publication.

[6] U.S. Department of State, “International Traffic in Arms
Regulations (ITAR),”
http://pmddtc.state.gov/regulations_laws/itar_official.ht
ml

[7] Wikipedia, “Audit,” http://en.wikipedia.org/wiki/Audit

