
To be presented at 26th Annual INCOSE International Symposium (IS2016)
Edinburgh, July 18-21, 2016

The Best of Both Worlds:

Agile Development Meets Product Line Engineering
at Lockheed Martin

Susan P. Gregg, Rick Scharadin

Lockheed Martin
{susan.p.gregg, richard.w.scharadin}@lmco.com

Paul C. Clements

BigLever Software
pclements@biglever.com

Abstract. Agile development has long been touted as way to optimize software development
team efficiency and improve project success. Product line engineering (PLE) brings
large-scale improvements in cost, time to market, product quality, and more. Can these two
paradigms work in concert with each other? This paper details the experience of Lockheed
Martin as it introduced large-scale agile development practices on one of its largest and most
successful product line engineering efforts.

Introduction
Agile software development refers to a group of software development methods in which
requirements and solutions evolve through collaboration between self-organizing,
cross-functional teams. It promotes adaptive planning, evolutionary development, early
delivery, continuous improvement, and encourages rapid and flexible response to change [8].
Its adherents tout higher quality systems, delivered faster, which much better match customer
needs and expectations.

Systems and software product line engineering, or “product line engineering (PLE)” for short,
is a way to engineer a portfolio of related products in an efficient manner, taking full
advantage of the products’ similarities while respecting and managing their differences.
Considering a portfolio as a single entity to be managed, as opposed to a multitude of
separate products to be managed, brings enormous efficiencies in production and
maintenance; these efficiencies are delivering order-of-magnitude improvements in
engineering cost, time to market, staff productivity, product line scalability, and quality [9].
What happens when an organization tries to apply both of these groundbreaking,
organization-changing methodologies at the same time? Can they work together at all? Is
PLE, which relies on cross-product planning and well-entrenched coordination, compatible
with Agile, the very essence of which is exceedingly short feedback loops and the ability to
pivot as needs change?
This paper conveys the experience of Lockheed Martin, the world’s largest defense
contractor, as it is applying PLE and Agile together on one of its largest and most important
projects. Not only is the project highly visible with demanding requirements, it is also very
large, comprising some 10 million lines of code. This setting would challenge either
methodology by itself; putting both of them together is yielding many lessons. At the end of

the day, however, the answer to whether the two methodologies can work in harmony is
resoundingly affirmative.

This paper will show how Lockheed Martin is using the two methodologies to support each
other, and the lessons it is learning as it does so.

What Is Product Line Engineering?
Product line engineering (PLE) is a way to engineer a portfolio of related products in an
efficient manner, taking full advantage of the products’ similarities while respecting and
managing their differences. By “engineer,” we mean all of the activities involved in
planning, producing, delivering, deploying, sustaining, and retiring products.
Born in the 1980s in the software field, but now having grown well beyond those early roots,
PLE offers large savings observed from engineering the whole family rather than separately
engineering each member. Numerous case studies [1][4][5][10][14][15] show that exploiting
the commonality throughout the products’ total life cycles can return substantial
improvements in time to market, cost, portfolio scalability, engineer productivity, and
product quality [13]; no other engineering paradigm shift has, to our knowledge, brought
about results that rival these.

PLE as a Factory
An analogy with factory-based manufacturing serves to illuminate the important concepts.
Manufacturers have long used engineering techniques to create a product line of similar
products using a common factory that assembles and configures parts to produce the varying
products in the product line. For example, automotive manufacturers can create thousands of
unique variations of one car model using a single pool of parts carefully designed to be
configurable and factories specifically designed to configure and assemble those parts.

In PLE, the configurator is the factory’s automation component; the “parts” are the assets in
the factory’s supply chain. A statement of the properties desired in the end product tells the
configurator how to configure the assets.
Figure 1 illustrates. This factory’s supply chain is at the left, in the form of shared assets that
are configurable because they include variation points that are expressed in terms of the
features [8] available in each of the products. A product specification at the top tells the
configurator how to configure the assets coming in from the left. The resulting products,
assembled from the configured assets, emerge on the right. This enables the rapid production
of any variant of any of the assets for any of the products in the portfolio. Once this
production line capability is established, products are instantiated – derived from the shared
assets – rather than manually created.

The products in the portfolio are described by the properties they have in common with each
other and the variations that set them apart. The products can comprise any combination of
software, systems in which software runs, or non-software systems that have
software-representable artifacts (such as requirements, engineering models, or development
plans) associated with the engineering process that produces them.

In this context “product” means not only the primary entity being built and delivered, but also
all of the artifacts that are produced along with it. Some of these support the engineering
process (such as requirements, project plans, design modes, and test cases), while others are
delivered alongside the thing being built (such as user manuals, shipping labels, and parts
lists). These artifacts are the product line’s assets.

Assets can be whatever artifacts are representable digitally and either constitute part of a
product or support the engineering process to create a product. Four kinds of shared assets
are shown in Figure 1, but those are just examples. Shared assets can include, but are not
limited to, requirements, design specifications, design models, source code, build files, test
plans and test cases, user documentation, repair manuals and installation guides, project
budgets, schedules, and work plans, product calibration and configuration files, data models,
parts lists, and more. Assets in PLE are engineered to be shared across the product line.

Figure 1: PLE as a factory.

PLE Contrasted With Product-Centric Development
PLE stands in contrast to traditional product-centric development, in which each individual
product is developed and evolved independently from other products, or (at best) starts out as
a cloned copy of a similar product that is then changed to suit the new product’s specific
needs. Product-centric development takes very little advantage of the commonalities among
products in a portfolio after the initial clone operation. In particular, it derives very little
benefit from commonality in a product’s sustainment or maintenance phase, where data
shows most products consume up to 90% of their project resources.
Figure 2 shows a production shop in which N products are developed and maintained. In this
stylized view, each product comprises requirements, design models, source code, and test
cases. Each engineer in this shop works primarily on a single product. When a new product
is launched, its project copies the most similar assets it can find, and starts adapting them to
meet the new product’s needs.

To see how this form of reuse can lead to intractable complexity, assume that a defect is
found in Product B, and that the defect is traced to an ambiguous or incorrect requirement in
Product B’s requirements. The Product B team fixes the error, re-designs as necessary, then
fixes the code and test cases before re-deploying Product B. Product B is now healthy again.

But suppose that the defect in Product B’s requirements was “inherited” when the Product B
team copied the requirements from Product A. Suppose further that the source code for
Product N was copied from Product B’s (defective) source code, and the test cases for
Product N were similarly “borrowed” from Product A’s (inadequate) test cases.

Figure 2: Product-centric development yields O(N2) complexity

To really root out the defect from the entire portfolio, each of the N product teams should
really confer with each of the other N-1 product teams. These communication paths are
shown in red in Figure 2. This communication obligation imposes an overhead that grows as
the square of the number of products. This complexity will quickly overwhelm any
engineering staff; in order to get their products out the door on time and on budget, each
product team will focus more on their product silo and less on taking advantage of the
commonalities and interdependencies among the other products. The result is divergent
product silos, low degrees of sharing, and high duplication of effort across the product silos
to fix the same defect multiple times in multiple products, or to independently implement the
same enhancements in different ways in different products.
Figure 1 alluded to PLE as a factory, and that analogy can be brought to bear to remedy the
O(N2) problem of portfolio management. In a manufacturing factory, a defective product
would not be fixed by one-off repairs to the product itself. Rather, the factory, its supply
chain, and the manufacturing process itself would be scoured to find the source of the defect.

So it is with PLE. Rather than fix a defective product, PLE engineers fix the shared asset(s)
that need to be modified (perhaps by adding a new variation point) in order to produce the
product correctly. Then, the configurator is used to re-generate the product, as well as any
other product affected by the changes in the shared assets. Since re-generation has a low and
fixed cost, it matters very little whether 2 or 200 or 2000 products need to be re-generated.
Thus, fixing a defect, making a systematic enhancement, or carrying out any other kind of
portfolio-wide change becomes an O(N) operation.

Product Line Engineering at Lockheed Martin

A product line of product lines
Lockheed Martin has for some years now been developing one of its flagship products for the
US Government as a product line, using the PLE factory paradigm described earlier. By now
the PLE processes and teams are mature and experienced, and view their primary objective as
developing once, and building and deploying many times from one set of common assets –
principally requirements, source code, and tests. Feature-based variation in requirements and
code enables building a member of the product line with or without a specific capability.
First, some terminology that has emerged from their PLE approach:

• Lockheed Martin calls a member of its product line a configuration. A configuration
might be, for example, an instance of the system to be deployed to a specific site. The
product line approach, then, exists to produce configurations for customers. This
product line we are writing about comprises roughly 100 such configurations.

• Each configuration that Lockheed Martin deploys to its final operational comprises
nine major software components, working together to achieve the functionality of the
full system. These software components are, in the context of their development
projects, are called products1. The variation in the systems, then, manifests itself as
variation within each of the products.

Each product is developed as a product line – a mini-“factory” – in its own right.
Accordingly, each product has a team associated with it, and is managed as a project, with
budgets and development schedules that must play into the budgets and schedules of the
systems at large. Thus, the overall product line is actually a product line of product lines. A
feature profile for the entire system is actually a set of feature profiles, each describing a
desired configuration of one of the products (components).

The coarsest-grained variation point is to include or exclude an entire component depending
on whether or not the feature(s) provided by that component are included in a configuration
or not. If a component is included, it can be further varied by exercising variation points
inside, again based on feature choices.

For requirements, the product line employs a common specification repository (a DOORS
database) that contains all requirements for all configurations, with varying requirements
captured in feature-based variation points. This model allows for multiple configurations to
share requirements while having the flexibility for each configuration to have unique
requirements as well.

During the test and verification phase, the product line utilizes a consolidated testing
approach to maximize efficiency of common requirements and capabilities. This results in
tailored regression testing based on changed functional area. An integrated test team also
uses common test plans and procedures. Common test efforts are leveraged and consolidated
problem reporting avoids duplicate reporting caused by redundant testing – all part of the
PLE factory approach.

1 This is a different definition of “product” than appeared in the introductory section on PLE. There, it meant a final

deliverable, a complete system. Here it refers to a component of a complete system.

Product line governance
Because of the size, importance, and visibility of the product line, governance of the product
line has emerge as a major issue. Stakeholders include multiple agencies of the US
Government, inside and outside of the Department of Defense. They, and Lockheed Martin,
had to create a number of governance structures, artifacts, and policies, to coordinate and
prioritize the various and (at times) competing interests in each of the configurations, as well
to head off confusion around who in the government was giving direction to Lockheed
Martin, by what authority, and what direction was being provided [6].

Some of the more germane facets of governance include:

• Regular, predictable build rhythm. There are three build releases a year, one in
each of January, May, and September. This so-called “1-5-9” rhythm brings great
stability to the program. Everyone, inside Lockheed Martin or out, can expect and
plan for the next release. Inside Lockheed Martin, build meetings are held weekly, to
make sure the next release is on track. Not every customer configuration in the
product line is required to accept every release; each makes its own decision
according to operational needs and the content of the particular build.

• Requirements review cycle. As in all product lines, changes to requirements
(whether to add new capabilities or address defects) that are made for one
configuration may have intended and unintended impacts to other configurations, and
must be reviewed across the product line with that in mind. A rigorous Requirements
Review Cycle for programs is held in March, July, and November (a “3-7-11”
rhythm) and is a joint Lockheed Martin/customer exercise.

• Governance boards. While Lockheed Martin worked to establish processes to
manage a coordinated planning approach and day-to-day development activities to
serve multiple masters, the government put in place a structure and associated
processes to ensure clear and consistent direction is being provided to maximize the
probability of success for all programs. This structure provides support for decision
making at three levels: Strategic, Programmatic, and Technical. These boards
adjudicate cross-program priorities and activities. Their respective decisions are
captured in a Development Fielding Plan, a Branch and Merge Plan, and a Build Plan.

If a program introduces an upgrade or new capability, it pays for it. Other programs are free
to pick it up, or not, as they wish, but they pay for any testing that is required and unique to
their context. After a development is complete and time has elapsed, newly found defects
become difficult to associate with any one program. In these cases all programs pitch in to
pay to have the defect corrected. Lockheed Martin gets a special funding account to fix all
defects, across the entire product line, that are not related to unique capability content in
development. Any program receiving special development funding pays for defects in that
development, up to its demonstration milestone, at which point the cost-sharing approach
kicks in.
This, then, is the institutionalized PLE situation at Lockheed Martin when Agile joined the
picture. As we shall see, some of these governance structures have been key to a seamless
Agile integration.

Agile Development
Agile software development is a group of software development methods in which
requirements and solutions evolve through collaboration between self-organizing,
cross-functional teams. It promotes adaptive planning, evolutionary development, early

delivery, continuous improvement, and encourages rapid and flexible response to change
[16].

Although are many specific agile development methods, all rely on a small number of
fundamental concepts:

• Iterative, incremental and evolutionary. Most agile development methods break
the tasks into small increments with minimal planning and do not directly involve
long-term planning. Iterations are short time frames that typically last from one to
four weeks. Each iteration involves a cross-functional team working in all functions:
planning, requirements analysis, design, coding, unit testing, and acceptance testing.
At the end of the iteration a working product is demonstrated to stakeholders.

• Efficient and face-to-face communication. Each agile team should include a
customer representative (called the “product owner” in the scrum methodology). This
person is appointed by stakeholders to act on their behalf and makes a personal
commitment to being available for developers to answer mid-iteration questions.

• Very short feedback loop and adaptation cycle. A common characteristic in agile is
the daily "stand-up", also known as the daily scrum. In a brief session, team members
report to each other what they did the previous day toward their team's sprint goal,
what they intend to do today toward their team's sprint goal, and any roadblocks or
impediments they can see to their team's sprint goal.

• Quality focus. Specific tools and techniques, such as continuous integration,
automated unit testing, pair programming, test-driven development and other
techniques are often used to improve quality and enhance project agility.

Scrum
Scrum is the specific agile approach chosen by Lockheed Martin. It provides a structure of
roles, meetings, rules, and artifacts. Teams are responsible for creating and adapting their
processes within this framework. Scrum uses fixed-length iterations, called sprints, which
are typically 1-2 weeks long.

A key principle of scrum is its recognition that during production processes, the customers
can change their minds about what they want, and that unpredicted challenges cannot be
easily addressed in a traditional predictive or planned manner [17].
There are three core roles defined in the scrum framework [17]:

• Product owner. The product owner represents the stakeholders and is the voice of
the customer. The product owner writes (or has the team write) customer-centric
items (typically user stories), ranks and prioritizes them, and adds them to the product
backlog. The product owner should be on the business side of the project, and should
never interfere or interact with team members on the technical aspects of the
development task.

• Development team. The development team is responsible for delivering potentially
shippable increments of product at the end of each sprint. A team is made up of 3–9
individuals who do the actual work (analyze, design, develop, test, technical
communication, document, etc.). Development teams are cross-functional, with all of
the skills as a team necessary to create a product increment. The development team in
scrum is self-organizing, even though there may be some level of interface with
project management offices.

• Scrum master. Scrum is facilitated by a scrum master, who is accountable for
removing impediments to the ability of the team to deliver the product goals and
deliverables. The scrum master is not a traditional team lead or project manager, but
acts as a buffer between the team and any distracting influences. The scrum master
helps ensure the team follows the agreed scrum processes, often facilitates key
sessions, and encourages the team to improve.

A sprint is the basic unit of development in scrum. The sprint is a time boxed effort; that is, it
is restricted to a specific duration. The duration is fixed in advance for each sprint and is
normally between one week and one month, with two weeks being the most common.

Each sprint starts with a sprint planning event that aims to define a sprint backlog, identify
the work for the sprint, and make an estimated commitment for the sprint goal. Daily scrum
meetings are held to assess progress and identify impediments to reaching the sprint’s goals.
Each sprint ends with a sprint review and sprint retrospective, that review progress to show to
stakeholders and identify lessons and improvements for the next sprints. [17]

Agile Comes to Lockheed Martin
Lockheed Martin has been able to achieve hundreds of millions of dollars in cost avoidance
from their successful application of PLE [7]. But in late 2014, corporate management
decided that Agile was the way to strengthen Lockheed Martin’s competitive position
through quality and affordability. This goal was levied on the entire organization, including,
for example, Lockheed Martin’s Orion spacecraft project, which involves some 350
engineers. Training began throughout the corporation in March, 2015.
Improvement measures for Agile are somewhat hard to come by, but the Standish Group
claims that Agile projects are three times as successful as Waterfall projects (Figure 3).
Others say “the use of agile methods results in increased cost-effectiveness, productivity,
quality, cycle-time reduction, and customer satisfaction ranging from 10% to 100% [11].

Figure 3: Agile projects are three times more successful than Waterfall projects

according to the Standish Group.

These and other ROI results motivated the adoption of Agile. It fell to those parts of the
organization already addressing competitiveness through affordability and quality with PLE
to work out how to add Agile to the mix, and achieve still more.

Melding Agile and PLE
Agile is, by and large, about

• a (usually small) single product

• fielded by a single (usually small) organization

• by one or more (always small) teams

• in a series of extremely short iterative development cycles
In the product line being described:

• The products – plural – are large by any standard, comprising some 10 million lines of
code and costing tens to hundreds of millions of dollars.

• The teams, spread across the products, are sizable. The largest component, for
example, involves over 200 engineers. Some 800 engineers are involved in the
product line overall2.

• The build cycles, under the product line’s 1-5-9 build tempo, are four months long.

How can these very different approaches be integrated?
Lockheed Martin’s first answer was “incrementally.” Figure 4 outlines a three-year phased
approach to bring in Agile practices. The first phase concentrates on risk reduction, training,
and release planning; the first release planning event was completed only a few weeks before
this paper was submitted. The second phase continues to roll out and begins to to optimize
workflows and team organizations that were put into place in the first phase; it also begins to
re-define some of the customer interactions that need to change, such as adapting to
finer-grained scheduling and budgeting and providing more embedded feedback. Finally, the
third phase continues the roll-out, incorporates business coordination, and transitions from
introduction to optimization.
But the question remains: How to bridge the gap between large-scale PLE and small-scale
short-iteration Agile? Here there are three answers, each detailed in a sub-section below.

Small projects
Agile in general, and Scrum in particular, are about the lean execution of development
projects. In the subject product line, projects are associated with component products. That
is, the projects are already defined. The goal, then, became making those projects Agile. That
in turn involved making the project teams into small, Agile teams working in short iterations
to support small-scale tasks that, taken as a whole, sum up to the purpose and work of the
original product teams.

2 This product line turns out to be the largest application of Agile in the entire corporation.

Figure 4: Lockheed Martin's three-year three-phase approach to incorporate Agile

methods

Small teams
Small teams resulted from decomposing the products’ large teams into Scrum teams of size
seven to ten. The teams, considered together, do the same work as they did before, but the
work has also been divided into smaller bite-sized chunks that match the team size and short
iteration (sprint) schedule.

The teams are self-organized by product, mostly around areas of domain expertise or
functionality, or around specific elements in the architecture. Figure 5 describes the
essentials of individual teams.

Figure 5: Scrum teams

So far so good: Decomposing large teams into small ones, and large tasks into small tasks, is
relatively straightforward.

However, instead of nine large product teams, the decomposition resulted in 100 or so small
ones. Further, the twelve major configurations are, at any point in time, each in a different
phase of development. For some, the major activity for the next release is writing concept
papers; for others it might be writing code; for still others, it could be testing. Coordinating
these activities among nine large teams was challenge enough; with 100 small teams,
ensuring everyone is working towards common large-scale goals, without devoting all their
time to management overhead tasks, becomes a concern of the first order.
This issue is Ground Zero of where PLE meets large-scale multi-project Agile.

To address this problem, Lockheed Martin has turned to the Scaled Agile Framework
(SAFe), a “knowledge base for implementing agile practices at enterprise scale.” It defines
the “individual roles, teams, activities, and artifacts necessary to scale agile from the team, to
teams of teams, to the enterprise level.” [12]
Dependencies are tracked using Atlassian’s Jira software project and issue tracking tool. Jira
helps plan and manage sprints, and it allows every team member to be involved in the
planning. This involvement lets everyone see and be aware of task dependencies, and leads
to more accountability, ownership, and buy-in to the team’s tasking. Teams vote
collaboratively to agree on the scope of a piece of work. If priorities are not being met, then
the higher-level governance structures describe earlier for the product line as a whole come
into play to adjudicate conflicts and re-orient the work.
This agile management of teams also provides flexibility in work assignments. A team with
more resources and less schedule pressure at the moment can “farm out” their services to
other teams in need.

This approach, using SAFe, received its first serious trial this past September with the
product line’s first full-up release planning event. All 100 teams, representing all 800
engineers, participated in this 3-day planning exercise and produced a coordinated plan for
the next eight weeks. Jira provided the way to manage links among program and product
work content, and all 800 engineers (many geographically dispsered) could see this picture
unfolding in real time.

Small iterations
While inter-team coordination is squarely in the realm of SAFe, work inside each team
follows classic Scrum, meaning that planned work is organized into two-week sprints. A
certain number of sprints add up to a release.
How many sprints? Recall from our overview of product-line-level governance that
Lockheed Martin has adopted a four-month release cycle referred to as their “1-5-9” rhythm.
Thus, eight sprints constitute a release. Here is an elegant case where PLE and Agile work in
synchronization with each other.
The work accomplished in each sprint is, again from Scrum, defined in terms of user stories.
A user story is a “developer-sized” task that can be implemented and tested in one or two
days. It constitutes the smallest capability that has business value.

User stories may be decomposed into tasks, which generally take 2-8 (worst case, 16) hours
to complete.

Users stories are used to accomplish features. A feature is a sort of large-scale user story that
often applies to an entire release. A feature is accomplished within a release cycle, and often
spans teams in its scope.
Features in turn constitute epics, a capability that spans multiple releases (perhaps even over
multiple years) and often involves the addition of major capability to the product line.
Figure 6 summarizes.

Operationally, each product team takes a program feature and decomposes it into features that
affect their product. These product features are then decomposed into user stories and tasks.
These constitute the team’s backlog. The work under this approach is by and large what it
would have been under the “pure” PLE approach, except that now it is decomposed into
assignments that can be agilely managed with greater precision and predictability, and
allowing for a much finer-grained prioritization.

Figure 6: Epics, features, user stories, and tasks

Following Scrum prescription, each sprint includes daily scrum meetings and culminates in a
sprint demo/review and a sprint retrospective. Table 1 outlines the contents and guidelines for
each.

Table 1: Sprint events
Daily scrum meetings Sprint demo/review Sprint retrospective

• Display Visible Progress
Indicators for team to review

• Scrum Guidelines
• Daily stand-up
• 15 minutes
• Not for problem solving
• Three questions: What did

you do yesterday? What will
you do today? Is there
anything in your way?

• Schedule follow-on
meetings to discuss details.

• Whole world is invited
• Only team members, Scrum

Master and Product Owner
can talk

• Scrum Master writes down
and tracks issues and
requests for additional
conversations

• Team “shows off”
working product
resulting from current
Sprint (what is “done”)

• Typically takes the form
of a demonstration of
new features or
underlying architecture;
establishes trust with
customer and
stakeholders

• Informal: 2-hour prep
time rule; no slides,
unless central to
showing work

• Whole team participates
• Invite the stakeholders
• Demo System
• Invite BD

• Short meeting held at the
end of each Sprint

• Celebrate the completion
of the Sprint

• Take a look at what is and
is not working

• Team reflects on how to
become more effective

• Then tunes and adjusts its
behavior accordingly

• Whole team participates
• Often uses a

Start/Stop/Continue
approach

• Whole team gathers
and discusses what they’d
like to… Start, Stop and
Continue

• After the first few
iterations, start using
measurements

Conclusions
So far, Lockheed Martin is finding that adding Agile to the PLE mix is paying off. For
instance, an agile approach to requirements allows them to adopt a “just enough, just in time”
approach with just enough detail to size a project and ensure its technical and economic
feasibility. This is a vast improvement from the “specify everything up front” approach that
sometimes led to poor decision making and inadequate early insight into the requirements’
downstream ramifications. Developing iteratively also allows users early access to the
system to uncover new and evolving requirements.

Agile provides for more level loading and resource allocation. Previously, the response to a
looming deadline was to “surge,” adding resources for a milestone and then ramping back
down. Now, with better planning and tighter customer involvement, that can avoided.
Lessons about teaming are emerging. First, teams should be co-located, if possible. Second,
this structure can expose weaker individuals; everyone needs to carry their weight, since
there’s no place for mediocre performers to hide on a small team. Not everyone is cut out for
this approach, as it requires individuals to perform to their best abilities.

Culminating each sprint with a review or demo for the customer (typically showing off new
features or architectural improvements) establishes trust and instills confidence in the
customer and other stakeholders.
Do Agile and PLE go together? The verdict is overwhelming positive at this point. Overall,
Lockheed Martin views Agile as a way to optimize the performance of PLE teams. Agile
complements PLE. Whereas PLE defined the teams, Agile takes that as a starting point and
refines those teams and optimizes the performance of their members. Agile, in a sense, is an
overlay atop the team and governance structures put in place by PLE. It provides a structure
and coordination tooling for the work that these teams needed to do anyway.

Future work includes collecting and analyzing metrics to spot areas of concern and further
improve performance. Classic agile metrics include velocity (essentially a measure of work
accomplished against user stories in a sprint), which can lend itself to trend analysis over
time. Also, the product line has made extensive cost avoidance measurements, and those will
be monitored carefully as Agile achieves enough of a track record to observe how it affects
those measurements. All signs point towards a significant and positive contribution.

References
[1] Brownsword, L. & Clements, P. A Case Study in Successful Product Line

Development (CMU/SEI-96-TR-016, ADA315802). Pitts- burgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996.
http://www.sei.cmu.edu/publications/documents /96.reports/96.tr.016.html.

[2] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J., Scharadin, R., Shepherd,
J., and Winkler, A., “Second Generation Product Line Engineering Takes Hold in the
DoD,” Crosstalk, The Journal of Defense Software Engineering, USAF Software
Technology Support Center, 2013, in publication.

[3] Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns,
Addison-Wesley, 2002.

[4] Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing U.S. Army Return on
Investment Utilizing Software Product-Line Approach,” Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC), 2012.

[5] Flores, R., Krueger, C., Clements, P. “Mega-Scale Product Line Engineering at
General Motors,” Proceedings of the 2012 Software Product Line Conference
(SPLC), Salvador Brazil, August 2012.

[6] Gregg, S., Scharadin, R., LeGore, E., Clements, P. “Lessons from AEGIS:
Organizational and Governance Aspects of a Major Product Line in a Multi-Program
Environment,” Proceedings, Software Product Line Conference 2014, Florence, Italy,
2014.

[7] Gregg, S, Scharadin, R., Clements, P. “The More You Do, the More You Save: The
Superlinear Cost Avoidance Effect of Systems and Software Product Line
Engineering, Proceedings Software Product Line Conference 2015, Nashville, 2015.

[8] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. “Feature-Oriented Domain
Analysis (FODA) Feasibility Study” (CMU/SEI-90-TR-021, ADA235785).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 1990.

[9] Krueger, C. and Clements, P. “Systems and Software Product Line Engineering,”
Encyclopedia of Software Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013, in publication.

[10] Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco. Software Product Lines in
Action, Springer, 2007

[11] Rico, D. F., “What is the return of investment (ROI) of agile methods?”
http://www.afei.org/WorkingGroups/ADAPT/Documents/rico08a[1].pdf, 2008.

[12] Scaled Agile Framework, www.scaledagileframework.com
[13] Software Engineering Institute, “Benefits and Costs of a Product Line,”

http://www.sei.cmu.edu/productlines/frame_report/benefits.costs.htm
[14] Software Engineering Institute, “Catalog of Software Product Lines,”

http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
[15] SPLC Product Line Hall of Fame, http://splc.net/fame.html

[16] Wikipedia, “Agile software development,”
https://en.wikipedia.org/wiki/Agile_software_development

[17] Wikipedia, “Scrum (software development),”
https://en.wikipedia.org/wiki/Scrum_(software_development)

Biography
• Susan P. Gregg is a Principal Project Engineer for the Lockheed Martin Corporation.

She holds a B.A. in Physics from Rutgers University. She has over 30 years
experience is systems and software engineering. She is currently the Technical
Director for the US Navy’s Common Product Line.

• Rick Scharadin has over twenty years of Senior Program Management experience
related to complex large scale system development, open architecture designs,
software product line development, product integration, test and delivery for various
Navy Aegis Baselines. He has accumulated over his career with Lockheed Martin 12
service awards, including manager of the year in 2001. Rick has a BS in Electrical
Engineering from Penn State and a MS in System Engineering from Stevens Institute.

• Dr. Paul Clements is the Vice President of Customer Success at BigLever Software,
Inc., where he works to spread the adoption of systems and software product line
engineering. He was previously at Carnegie Mellon’s Software Engineering Institute,
where for 17 years he worked in software product line engineering and software
architecture documentation and analysis. Clements is co-author of three
practitioner-oriented books about software architecture as well as the field’s leading
text on software product line engineering.

