
	

Enterprise Feature Ontology for Feature-based
Product Line Engineering and Operations

Charles Krueger, Paul Clements

BigLever Software

{ckrueger,pclements}@biglever.com

ABSTRACT
Feature trees have been the standard data structure for
representing product diversity in feature-based systems and
software product line engineering (PLE). For basic product lines
of modest size or complexity, one or several modular feature trees
can be sufficient for managing the and resolving the variation
present across the engineering assets in the systems engineering
‘V’ — from requirements, to design, through implementation,
verification, validation, documentation, and more — in the
software, mechanical, and electrical disciplines. However,
enterprises seeking to adopt PLE at all levels of their organization,
including areas such as product marketing, portfolio planning,
manufacturing, supply chain, product sales, product service and
maintenance, Internet-of-Things, resource planning, and much
more are finding that thousands of non-engineering users need
different views and interaction scenarios with a feature diversity
representation. This paper describes a feature ontology (a
specification of the meaning of terms in the feature modeling
realm) that is suitable for managing the feature-based product line
engineering and operations in the largest and most complex
product line organizations. This ontology is based on layers of
abstraction that each incrementally constrain the complexity and
combinatorics and targets specific roles in the organization for
greater degrees of efficiency, precision, and automation across an
entire business enterprise.

CCS CONCEPTS
• Software and its engineering Software product lines;
KEYWORDS
Product line engineering, software product lines, feature
modeling, feature profiles, bill-of-features, variation points,
product portfolio, product configurator, feature-based product line
engineering, PLE factory, enterprise feature ontology

ACM Reference Format: Charles Krueger, Paul Clements,
Enterprise Feature Ontology for Feature-Based Product Line
Engineering and Operations. In Proceedings of SPLC ’17, Sevilla,

Spain, September 25-29, 2017, 10 pages.

DOI: 10.1145/3106195.3106218

1. INTRODUCTION
Product line engineering (PLE) is an approach for engineering a
portfolio of related products in an efficient manner, taking full
advantage of the products’ similarities while respecting and
managing their differences. By “engineer,” we mean all of the
activities involved in planning, producing, delivering, deploying,
sustaining, and retiring products. However, modern PLE is
expanding beyond just engineering and into other enterprise-
critical areas such as manufacturing, operations, marketing,
supply chain management, portfolio planning, and more. As this
occurs, the concept of “feature” that has long held sway in the
engineering realm may no longer be appropriate to these new and
non-engineering-oriented stakeholders.

Recently, a form of PLE known as Feature-Based Software and
Systems Product Line Engineering (“Feature-Based PLE”) has
emerged as a modern, repeatable, codified, and proven-in-practice
specialization of generic PLE practice. Supported by industrial-
strength automation and methodology, Feature-Based PLE is the
subject of an upcoming ISO standard that is in progress with
involvement and support from INCOSE through its Product Line
Engineering International Working Group [14]. Feature-Based
PLE involves automation-supported configuration of engineering
artifacts to reflect the feature choices embodied by a product.
Configuration of artifacts based on feature choices is a powerful
paradigm, and there are many successful applications of Feature-
Based PLE in the literature [1][3][5][6][7][13].

As implied by the name, the notion of feature lies at the
conceptual heart of Feature-Based PLE. We, along with many
others, adopt the definition that a feature is a distinguishing
characteristic that sets products in a product line apart from each
other [11]. We find this definition to be intuitive, easy to teach,
and helpfully exclusionary: In Feature-Based PLE, a capability
common to all products in a product line is not considered a
feature.
And, for small product lines built by small organizations, it has (in
our experience) been quite sufficient. However, we find that for
extremely large product lines (with thousands to millions of
members) produced by extremely large enterprises (with many
thousands of engineers and large numbers of non-engineering
stakeholders), a more textured definition is needed.

And such organizations are in existence today. The automotive
product line at General Motors, for instances, comprises 9-10
million vehicle instances in some 30,000 unique
electrical/electronic configurations, all put together by some 5,000
product line engineers [20]. As we tour the ontology, this is the
kind of organization to bear in mind.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org . SPLC '17, September 25-29, 2017, Sevilla, Spain

© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-5221-5/17/09…$15.00

http://dx.doi.org/10.1145/3106195.3106218

	

What constitutes a distinguishing characteristic depends on
organizational roles. To a test engineer working to fully define a
test procedure that can be used for one or more products in a
product line, a distinguishing characteristic might be as fine-
grained as the color of the start button for a piece of equipment:
Is it red or black? Such a distinction could not be further from the
mind of, say, a vice president of product strategy in the same
company, for whom a distinguishing characteristic might be
which of her company’s automotive vehicles are going to offer
autonomous driving three years from now.

The PLE literature is rife with examples of feature models,
typically shown in a notional box-and-line representation such as
provided by FODA [11]. A car might have bucket seats or bench
seats; a user interface might present in English or German; a
smartphone might have a five-inch screen or a seven-inch screen;
and so forth. Interestingly, those features correspond to neither
the test engineer’s notion of a distinguishing characteristic nor the
vice president’s. Rather, it would seem that they are somewhere
“in between,” and of (legitimate) interest to stakeholders
somewhere “in between” the test engineer and the vice president.

Indeed, others have recognized that “feature” is a concept in need
of elaboration for application to large multi-role organizations; a
simple one-size-fits-all notion simply won’t do [10][16][18].

This paper takes these observations as a launch point and explores
how different organizational roles in a large PLE organization
view “distinguishing characteristics” – that is, features. The result
of this exploration is a feature ontology that defines a partitioned
space into which the kinds of features we described above, and
more, fit, as well as to describe the kind of enterprise stakeholder
interested in each partition. We do this for three reasons:

• We need to recognize that, for very large organizations, a
one-size-fits-all definition of “feature” is not helpful for
people to understand or to use. Having a fuller and role-
specific picture of what constitutes a feature will help such
an organization adopt PLE more quickly and effectively.

• Product line enterprises are now recognizing that feature-
based variant management also has value in organizational
operations “on the wings” of the engineering lifecycle, in
areas such as product marketing, portfolio planning,
manufacturing, supply chain, product sales, product service
and maintenance, resource planning, financial projections,
and much more. Thousands of non-engineering users within
an enterprise need different views and scenarios to interact
with an all-embracing feature representation.

• PLE tools that capture and model features will need to
embrace all of the meanings and distinguish among them in
order to speak to the many different kinds of users that will
be viewing, creating, and putting to use all kinds of features
throughout the product line.

2. ONTOLOGIES
This paper presents an enterprise ontology for features that is
suitable for managing feature-based product line engineering and
operations in the largest and most complex product line

organizations. An ontology is an “explicit formal specification of
the terms in a domain and relations among them” [9], in order to
“share common understanding of the structure of information
among people or software agents” [15]. The people are those who
will use the Feature-Based PLE paradigm. The “software agents”
to inform include the PLE tools that are the technological engines
of the Feature-Based PLE paradigm.

Our ontology will introduce terminology for features that
recognize the kinds of levels to which the Introduction alluded. It
will have the following characteristics:

• The levels fully partition the space of features. No feature
can be in two levels, which we will call layers.

• Features in each layer can be described in terms of the
choices they make available, and instances that reflect
choices actually made.

• Features in each layer can be described to typical roles in a
large organization that will find features at that level useful
in doing their jobs.

• The layers are connected to each other as follows: The
choices made at a particular layer constitute the choices that
are available at the next higher level.

Before we present our ontology, it is necessary to explore the
form of PLE to which it applies, to see how features and feature
choices lead to the production of products.

3. FEATURE-BASED PRODUCT LINE
ENGINEERING: AN OVERVIEW
Feature-based PLE uses a reference model that is based on a
factory metaphor. The PLE factory produces digital assets across
the entire lifecycle for products in a product family, analogous to
a conventional factory producing physical assets and products.
All development happens inside the factory; the output of the
factory is for validation and delivery.
The components of the PLE Factory (Figure 1) are as follows:
1. A product line’s Feature Catalog is a model of the

collection of all of the feature options and variants that are
available across the entire product line. Feature Owners,
Feature Architects create their respective sections in the
feature catalog.

2. A Bill-of-Features is a specification for a product in the
product line portfolio, rendered in terms of the specific
features from the Feature Catalog that are included in the
product. In other words, it is a feature-based product
specification, defined as an instantiation of the available
feature choices in the Feature Catalog. The Bill-of-Features
Portfolio is the collection of Bills-of-Features that, together,
define the entire product line. Portfolio teams, typically
working with product marketing teams, create Bill-of-
Features for product families and “flavors”, based on the
features available in the Feature Catalog.

	

3. Shared assets are the digital artifacts associated with the
systems and software engineering lifecycle of the product
line. Shared assets can be whatever digital artifacts compose
a part of a delivered product or support the engineering
process to create and maintain a product. Shared assets can
include, but are not limited to, requirements, design
specifications, design models, source code, build files, test
plans and test cases, user documentation, repair manuals and

installation guides, project budgets, schedules, and work
plans, product calibration and configuration files, data
models, parts lists, and more. Assets in PLE are engineered
to be shared across the product line. In Feature-Based PLE,
shared assets are maintained as supersets; that is, any content
needed by any of the products can be found in the superset.
The supersets include variation points, which are
declarations that specify under what feature choice
combinations a specific piece of content is needed and in
what form it is needed. Variation point content will be
included in a product’s digital assets if that feature or feature
combination has been chosen, and omitted otherwise. Asset
engineers create variation points in their subsystem assets,
based on the Features available in the Feature Catalog. Asset
engineers typically specialize into their own specific
disciplines: Requirements Engineers, System Modeling
Engineers, Test Engineers, BoM Engineers, Document
Engineers, and so forth.

4. The PLE Factory Configurator is the mechanism that
automatically produces application assets for the digital twin
of a specific product. In Feature-Based PLE, the configurator
is an automated tool, as opposed to a manual process. It
performs its task by processing the Bill-of-Features for that
product, and exercising the shared assets’ variation points in

light of the feature choices in that Bill-of-Features. The
configurator provides the abstraction-driven automation the
eliminates the labor-intensive and error-prone activity of
manually assembling and modifying engineering assets for
the digital twin for each product in the product line. An
example is Gears [1], although there are others as well.

5. System Asset Instances are product-specific instances of the
Shared Asset Supersets, automatically produced by the PLE
Factory Configurator. System asset instances are validated
and delivered to the next lifecycle phase (e.g.,
manufacturing), to the customer, or to the market. Suppliers,
testers, manufacturing, sales and more use the generated
assets, configured by the Bill-of-Features for a system or
product family

The factory operates as follows: Shared Asset Supersets are
configured by the PLE Factory Configurator based on a Bill-of-
Features in the Bill-of-Features Portfolio, derived from the
Feature Catalog, to produce a System Asset Instance. The
complete collection of digital engineering assets across the
systems engineering and software engineering and operations
lifecycle for a single physical product is sometimes referred to as
the “digital twin” of that product. Thus the Feature-Based PLE
Factory in this reference model gives birth to the digital twin for
each product in a product line portfolio.

4. VARIATION POINTS: THE ULTIMATE
“DISTINGUISHING CHARACTERISTICS”
We begin our exploration of the ontology by returning to our test
engineer from the Introduction, intent on correctly specifying for
each product whether a start button was red or black (and
hundreds of other similar details), so that he or she can produce a
correct test spec for each product.

Figure 1 Reference model for the PLE Factory in
Feature-Based PLE

	

Extrapolating that scenario across the whole panoply of
engineering assets that support the set of products in a product
line, we can construct a helpful thought experiment. Imagine
performing a “diff” operation across all of the engineering
artifacts that represent all of the product instances in a product
line. It would sort through, for example, requirements
specifications, design models, test cases, software, files
mechanical parts listed in a Bill of Materials, sections or
paragraphs or even individual words in a user’s manual, slides in
training courseware, and much more. What would the diff
operation return? No doubt:

• Words, phrases, or lines of requirements

• Terms or lines of source code

• Words or lines or paragraphs of test procedures

• Model elements or attributes in design specs

And so on – in other words, all of the places where the digital
engineering representations of any two products differ from each
other.

In a product line comprising thousands to tens of thousands of
instances such as in the automotive domain, for example, there
may easily be millions of these differences, meaning that the
variation space is roughly 21,000,000. While they are undeniably
“distinguishing characteristics,” albeit tiny ones, and undeniably
important to manage correctly, it becomes immediately clear that
they cannot be what we wish to consider as features: No
organization could create and manage a bank of millions of
features. Nor do these tiny differences lend any insight into
meaningful ways in which products differ from each other.
Thus, there cannot be a one-to-one correspondence between a
feature and a variation in an engineering artifact. We need a more
abstract concept to power the Feature-Based PLE approach in a
practical and powerful way.

5. FEATURES ARE ABSTRACTIONS
Let us accept that features cannot correspond one-for-one with
variations in product artifacts (which we can now call System
Asset Instances based on our picture of Feature-based PLE). In
order for a Feature Catalog to be tractable to represent and
manage, a feature needs to be more powerful than a switch that
turns tiny bits of content on and off in each Shared Asset
Superset. Therefore, in order to realize the Feature-based PLE
narrative (feature choices are used to configure engineering
artifacts), there must be a one-to-many correspondence between
features and engineering artifact variation1.

Happily, another word for a one-to-many mapping is abstraction
[19], which is exactly the concept we need: Features are
abstractions of variations; one feature can “drive” multiple (many)
artifact-level variations. This one-to-many mapping matches our
engineering intuition about features: If a capability is included in
a system, then requirements, design elements, source code, test

1 This means that each feature serves a role in potentially many

variation points. In practice, a variation point’s resolution may
depend on more than one feature, combined using normal
Boolean operators: (Feature1 OR Feature2) AND NOT Feature
3, and so forth.

cases, user documentation and more, all corresponding to that
capability, should be included in the product’s digital twin. If the
capability is omitted, then all of that material should be omitted.

It also matches our practical intuition about features. To elicit the
distinguishing characteristics among products, we would not
expect our product portfolio experts to tell us about differences in
lines of code or test cases. Rather, we would expect to hear about
more abstract differences expressed in terms of capability,
function, usage environment, etc.
It turns out that each layer of our feature ontology provides an
abstraction – a many-to-one mapping – of the layer beneath it.

6. ABSTRACTIONS HAVE INSTANCES
We only need one more concept before we can describe our
ontology, and our test engineer will once again help us to
verbalize it.

The test engineer is worried about the button color because on
some products the button is red whereas on other products the
button is black. That is, there is a choice available between red
and black, but each individual product will reflect a choice made
of either red or black.

Likewise, every level in our feature ontology will define a space
of choices available, against which individual products will be
assigned a choice made. Bench seats or bucket: Those are the
choices available. The sports car will have bucket chosen for it,
whereas the sedan will get bench.
With these concepts – different levels of features appropriate for
different organizational concerns, features as abstractions, and
choices available and choices made – we are ready to introduce
our feature ontology.

7. ENTERPRISE FEATURE ONTOLOGY
7.1 ONTOLOGY LAYER 1: PRIMITIVE
STANDALONE FEATURES
A primitive standalone feature is a single distinguishing
characteristic that can “drive” the setting of one or more variation
points in one or more Shared Asset Supersets. It is characterized
not in terms of the specific variation point content but rather as a
more abstract characterization of a product.

Each primitive standalone feature, by its very existence,
constitutes and establishes a choice to be made on behalf of each
product. The choice can be whether the feature is present or not,
and/or which flavor or flavors of the feature can be chosen. In the
latter case, there are also rules about whether the flavors are
mutually exclusive or not; that is, whether or not you are allowed
to choose more than one flavor for a product. A “flavor” may
itself be a primitive standalone feature, leading to the notion of a
tree of features.

• Roles of concern: Engineers concerned with specific
product capabilities work with primitive standalone features.

• Data structure: A primitive standalone feature is a name
(the name of the feature) and a set of choices available (such
as in, out, and/or a list of flavors).

• Representation: A primitive standalone feature is
conveniently (but not necessarily) represented graphically,
using a tree-shaped box-and-line structure. A type may be
introduced to constrain the choices; for example:

o A Boolean type limits the choice to whether the
feature is selected or not

	

o An enumeration type requires exactly one flavor to be
chosen

o A set type allows any number of flavors to be chosen.

o Flavors themselves may have types such as “integer”
or “string,” which limit the values they may take on.

• Instance: We call a choice made against a primitive
standalone feature a standalone primitive feature instance. A
valid instance obeys the rules imposed by the types.

• Effect on complexity: The point of a single primitive
standalone feature is that it may configure multiple variation
points in multiple shared asset supersets. If it configures on
the order of 10 variation points, then our variation space of
millions in the shared asset superset realm reduced to a
variation space measured in the hundreds of thousands
overall. An individual engineer is likely to be concerned
with primitive standalone features numbering in the dozens.

Figure 2 Three examples of primitive standalone features

Making features abstract with respect to specific variation points
in specific engineering artifacts reduces the number possibilities
by orders of magnitude. A product line as large as the portfolio of
a company like General Motors may comprise on the order of ten
thousand features like the ones we are describing here [6]. For a
company as large as General Motors, with thousands of engineers
working in the product line context, ten thousand is a manageable
amount.

7.2 ONTOLOGY LAYER 2: BUNDLING
PRIMITIVE STANDALONE FEATURES
INTO FEATURE MODELS
We find that primitive standalone features are conceptually very
helpful but in practice too fine-grained to be an ongoing focus of
attention. In product lines of complex systems, product line
engineers tend to be assigned to specific areas of knowledge and
expertise, and the variation in these areas transcends individual
features. A bundled construct is more helpful to let them capture
variation in those broader areas. A bundle of individual features
also is a place where constraints on choices can be conveniently
expressed and captured – for example, that two features are
mutually exclusive (so at most one may be chosen) or mutually
required (so that zero or both must be chosen).
We call this bundle a feature model.

• Roles of concern: Product line engineers who are concerned
with variation in a specific area of a system that transcends

individual features work with feature models. These are
typically subject matter experts for a specific area of
capability within a product. They may collaborate with the
portfolio planning organization to determine which
differentiating characteristics should be offered as primitive
feature choices. The list of feature profiles that should be
offered of also determined and defined by the subject matter
experts collaborating with the business to determine which
offerings are technologically feasible and provide the best
economic return for the enterprise.

• Data structure: A feature model is essentially a
concatenation of a set of primitive standalone features.

• Representation: A feature model is conveniently (but not
necessarily) represented as a tree structure, with the roots of
the individual primitive features becoming children of a new
parent root node.

• Instance: An instance of a feature model is called a feature
profile. Each feature profile is assigned a name, which
describes (and stands in for) the set of choices made against
the choices made available by the feature model.

• Effect on complexity: We find that a typical feature model
combines on the order of ten primitive standalone features.
Smaller ones are certainly possible. Larger ones are certain
possible as well, but we find that feature models with many
more than ten features become difficult to grasp. We also
find that a typical feature model offers on the order of ten or
so feature profiles. Thus, overall, it is not unusual to see
feature models with up to 100 or so features offered with a
dozen or less feature profiles, thus reducing the available
choices by more orders of magnitude. Our complexity space
is now around 21000.

Figure 3 Feature model that bundles the three primitive

standalone features of Figure 2

7.2.1 Feature Models as Modularity Constructs
Just as large software systems are composed into coherent
modules, to facilitate ease of change and productive work by
separate members of a large team [16], so it is with feature
models. The bundling manifested by a feature model provides a
cleanly packaged and coherent set of features, to achieve ease of
change and to enable productive work by members of a team.

Feature models have names and, in practice, generally correspond
to specific capabilities, or subsystems, or some other generally
acknowledged unit of system decomposition. Feature models
may also be used to distinguish between customer-facing features
(for example, would you like a cruise control on your car that
detects the car ahead of you and keeps you from running into it?)
and inward-facing or implementation-oriented features (to detect a
car in front of us, shall we use a camera on the front bumper, a
LIDAR sensor, or a short-range radar?). Both decisions represent
important and legitimate feature choices, but are meaningful to
different audiences, and so it is convenient to put them in different
feature models. Assuming any of the inward-facing choices
would do the job, the actual decision there is based not on

	

functionality, but on the achievement of quality attributes: this
sensor costs less, but that sensor weighs less and produces less
heat; however we happen to have a warehouse full of this other
sensor, all ready to use.

Just as dividing software into parts requires keen architectural
insight and ability, defining the scope of a feature model requires
the same kind of architectural thinking. Just as a software module
should have high cohesion, features in a feature model should be
similarly cohesive, and a feature model should be assigned to an
appropriate subject matter expert (or team) to own and manage its
content and evolution.

Typically, a particular shared asset, such as a requirements
module, source code component, or test suite, won’t need all of
the features to configure its variation points. Instead, one or a few
feature models will often suffice. Later in the ontology, we’ll see
how to make use of this.

7.2.2 Feature Profiles as Supported Bundles of
Primitive Feature Instances
A feature model such as one in Figure 3 only lays out choices that
are available. Someone has to actually choose, and we need a
way to record the choices.
We could let people browse through the feature model and choose
any combination of features present. However, this quickly
reveals itself to be an undesirable choice. Combinatorics of
feature models are such that even quite modest feature models
may lead to many thousands of possible choice combinations –
too many to implement and too many to test.

Thus, we don’t want to let people pick and choose among
individual features. Rather, we want to offer only those sets of
pre-packaged choices that (a) contribute to products that are
technically and economically feasible to engineer and build; and
(b) contribute to products that a customer or the market would
actually want to buy. Feature profiles serve that role. A feature
profile represents a unique and supported configuration of a
feature model. These, then, are the combinations we are willing
to build and test and offer to the product line at large – not just
any combination at random, but a set that has been identified with
analysis and forethought.

Figure 4 illustrates a feature profile for the feature model shown
in Figure 3. Graphically, it replicates Figure 3 except that now
checkboxes are filled in, indicating the choices made.

Figure 4 A feature profile for the feature model shown in

Figure 3

7.2.3 Feature Model as a Higher-Order Feature
Abstraction
The feature model and its list of named feature profiles together
represent a higher order feature abstraction in our feature
ontology. A named feature model (Power Door Locks in our
example) becomes a single higher-order feature that encapsulates
and hides the details of its primitive feature model tree. Each
named feature profile becomes a single higher-order choice and

the list of named feature profiles become a higher-order
enumeration of mutually exclusive choices for the higher-order
feature model.

7.3 ONTOLOGY LAYER 3: BUNDLING
FEATURE MODELS INTO SUBSYSTEM
PRODUCTION LINES
After primitive standalone features are assembled into feature
models and their individual feature instances bundles into feature
profiles, the result is a collection of feature models and feature
profiles that can still be quite large – possibly thousands of feature
models (and tens of thousands of feature profiles) in a large
product line.

Also, our heuristic of not wanting feature models to be too large
(and therefore difficult to comprehend, work with, and change)
has led us to have multiple feature models that may belong to the
same subject matter area. A construct to bundle those would be
helpful.

Furthermore, remembering that the ultimate objective of features
is to configure shared assets into product-specific System Asset
Instances, there needs to be an ontological element that combines
one or more feature models and the Shared Asset Supersets that
are configured, so that the PLE Factory Configurator can apply
the former to the latter.

(It would have been possible to “attach” assets to either of the
previously described layers. In fact, for consistency’s sake, purists
can consider assets to be attachable at any layer. To be attached,
the scope of the asset’s subject matter should match the scope of
the features captured at that layer. In practice, however, we find
that the number of assets matching that description for standalone
primitive features and individual feature models tends towards
zero, so we delayed introducing shared assets until this point in
the ontology.)
These combined needs – bundling related and not-too-large
feature models while introducing shared assets to be configured
by feature choices in a coherent subject matter area – lead us to
the next layer in our ontology. This encapsulation for one or
more feature models and assets is a subsystem production line.

• Roles of concern: The roles responsible for engineering the
subsystem production line are typically systems engineering
experts for a subsystem within a product. They may
collaborate with the portfolio planning organization to
determine which differentiating characteristics should be
offered as higher-order feature choices. The list of
production line profiles that should be offered of also
determined and defined by the systems engineering experts
collaborating with the business to determine which offerings
provide the best economic return for the enterprise.

• Data structure: The choices available in a subsystem
production line are the choices made available by the
constituent feature models – that is, their feature profiles. If
a production line includes four feature models, then there are
four choices available at the production line level – the
feature profile for each feature model.

• Representation: This can be represented graphically using a
tree structure similar to that for feature models. Each feature
model would be assigned one node; its feature profiles would
be its children; its type would effectively be Enumeration
(one choice only). Since the depth of a tree will not exceed
one level below the root, another convenient form of
representation is a matrix. Each row specifies a set of

	

choices; there is one column for each feature model. A cell
holds the choice of profile for that column’s feature model,
for that row’s choice bundle. (We will assume the matrix
form of representation from here on.)

• Instance: The instances at this level are named, bundled
combinations of instances at the next lower level – that is,
feature profiles. For example, if our production line contains
feature models PowerDoorLocks (with profiles Passive,
Physical, and Auto) and FuelFillerDoorUnlock (with feature
profiles Manual, InCabin, and Remote) then instances might
be

o HighEnd: {Auto, Remote}
o LowEnd: {Physical, Manual}.

HighEnd and LowEnd would then (using the matrix
representation) become the names of matrix rows, and
constitute bundled offerings to the next higher layer in the
ontology. We call HighEnd and LowEnd production line
profiles.

• Effect on complexity: Because subsystem production lines
typically combine on the order of ten or so feature models,
our variation space is now roughly 2100.

Figure 5 shows a subsystem production line called Entry Controls
that (using the matrix representation) combines the offerings
(feature profiles) of three feature models (PowerDoorLocks,
RearEnclosureUnlock, and FuelFillerDoorUnlock into seven
offerings (production line profiles) of its own. This matrix shows
that, for the first three offerings, the choice for
FuelFillerDoorUnlock is to omit it entirely – always a possibility.

Figure 5 A matrix that combines choices from three feature

models.

7.3.1 Subsystem production lines as modularity
constructs
Defining the scope of a subsystem production line is, like scoping
a feature model, also an architectural activity. We find that, at

this level, a production line will often represent a subsystem that
is part of the products of the product line, with the shared assets
associated with that subsystem.

Each production line has in it the set of feature models that
contain the features needed to configure the variation points in
those assets. If the feature model is defined to be part of the
production line, it can be said to be owned by that production line.
But sometimes a production line needs to refer to other feature
models in order to configure an asset. In that case, it can import a
feature model (by reference) from the owning production line. A
feature model can be owned by one production line, but imported
into multiple production lines if its features are crosscutting – a
common occurrence. Imported feature models are used to manage
feature dependencies and constraints on feature selections across
subsystems.

7.3.2 Subsystem Production Lines as Higher-Order
Feature Abstractions
The subsystem production line and the list of named production
line profiles represent, once again, a higher order feature
abstraction in our feature ontology. A named production line
(Entry Controls in our example) now becomes a single higher-
order feature that encapsulates and hides the low level details in
its collection of feature models and feature profile choices. Each
named subsystem production line becomes a single higher-order
feature offering the choices enumerated in (for example) its
matrix. To the outside, our example looks exactly like an
Enumeration feature named Entry Controls with seven possible
and mutually exclusive flavors.

It is not unusual to see a production line with millions of possible
combinations of profile combinations having ten or less
production line profiles, thus once again reducing the available
choices by orders of magnitude.

7.4 ONTOLOGY LAYER 4: BUNDLING
SUBSYSTEM PRODUCTION LINES INTO
SYSTEM PRODUCTION LINES
Subsystem production lines tend, in practice, to capture the
variation and shared assets associated with a subsystem. A
subsystem may be clearly identified in a common architecture for
the product line, or it may be informally identified by the presence
of a dedicated group of people who work on it, and a collection of
shared assets devoted to engineering it.

Clearly another level of scope beckons. We need to bundle
subsystem production lines into product offerings at the system or
whole-product level.

After all of the feature models are partitioned into subsystem
production lines, the result is a collection of production lines that
can still be quite large – possibly hundreds or even thousands of
production lines in a large product line, as may be found in the
automotive industry [20]. There subsystem production lines may
exist for brakes, transmissions, lighting, infotainment, entry
controls, climate control, and a whole host more.

Since production lines act as higher-order features in the ontology,
we can extend the definition of a production line to also include
other production lines, resulting in a hierarchy, or tree (see Figure
6). In this way, we can mirror a system-of-systems architecture
with a production-line-of-production-lines hierarchy. The
constituent production lines provide places to make feature
decisions corresponding to that part of the system-of-systems
structure.

	

• Roles of concern: Anyone concerned with the variation of
systems at the highest level is concerned with the system
production lines. This can include portfolio planners and
managers, marketers and business development specialists,
and the engineering and business leadership in a business
area or the enterprise at large.

Figure 6 Subsystem production lines bundled into a system
production line. An imported production line appears as a

column in the matrix of its parent, the importing production
line. Rows in the imported production line become available

as cell choices in that column.

• Data structure: The same as for subsystem production lines.

• Instance: Each instance of a system production line is a
Bill-of-Features, as illustrated in Figure 1. A Bill-of-

Features is the ultimate feature-based description for a whole
product.

• Effect on complexity: Each level in the production line
hierarchy often provides a one- to two-orders of magnitude
reduction in the combinatoric complexity by limiting the
number of specified profiles relative to the number of
possible profiles. A two- or three-level hierarchy (typical, in
our experience) yields a complexity space of about 250.

Once again, defining the production line hierarchy is much like
scoping an individual production line or scoping a feature model –
it is an architectural activity. In this case the architectural
objective is aligning it to a system-of-systems structure. The
production line hierarchy can go to any level of depth. Each level
in the hierarchy represents a new level of abstraction, where the
production line becomes a new higher-order feature and its
production line profiles (rows in the production line matrix)
become the available choices for that higher order feature.

Finally, although the concept could be applied theoretically at
lower levels in the ontology, we find that this is a particularly
helpful place to introduce staged configuration [4][12]. This is
essentially a mechanism that allows different stakeholders, each
with specialized knowledge about the choices appropriate for a
product, to make their choices in a way to produce a coherent,
consistent whole product.

8. OVERLAY: PROLIFERATION
BUNDLES
At this point in our ontology, we are down to defining a product
by making choices numbering in the dozens, say 50 or so. For
very large production lines, the number might be in the hundreds,
but 50 is a nominal number to consider going forward.
Organizations that specify thousands or tens of thousands of
products don’t want to painstakingly fill out a matrix row for
every one of them. Modern PLE Factory Configurators have a
“proliferate” feature that can automatically produce rows in a
matrix at the leaf of the hierarchy for every combination of profile
choices that are still unbound. A proliferated matrix lays out all
the choices for all the products that we can now, for example, take
to manufacturing.

However, 50 or so choices still leaves us with 250 possible

Figure 7: Proliferation bundles

	

combinations of choices, which means we could define 217 (about
131,000) absolutely unique products for every one of the 233
people on Earth. Before we push the “proliferate” button, we
need a way to further pare down the choices.

In the same way that feature profiles reduced the potential
complexity inherent in primitive feature models, we will use
proliferation bundles to whittle down the potential choices. The
idea is to create meaningful bundles of the unbound selections to
limit proliferation.
Figure 7 illustrates the concept. At the top is a template matrix
with eight columns A-H. We have annotated the number of
choices that remain available in each column: There are 16
choices available for A, 10 for C, 7 for E, and 8 for H. All other
columns have fully bound selections. At this point we have the
possibility of 16 x 10 x 7 x 8 = 8960 unique products. This is too
many; this wide variety would overwhelm our manufacturing
capability.

We realize that we don’t need or want the 70 combinations
possible from columns C through F. Instead, we decide that we
create a bundle called VX that offers 4 combinations instead. By
defining that bundle and letting subsequent (descendant) matrices
choose from its choices, we have slashed our possible number of
products to 512.
These manufacturing bundles, in which combinations of different
features are limited and offered as packages, are common in the
automotive industry. General Motors calls them “Regular
Production Options;” other auto-makers have their own
terminology. These so-called “RPO codes” comprise feature
bundles that are available to a customer, such as a Sports package
that combines a high-performance engine, a particular
transmission, a tight suspension system, a prescribed steering
wheel cover, external paint trim, and more.

Proliferation bundles have, for very large product lines, finally
brought us down into a decision space that is manageable,
understandable, and manufacture-able.

We call this construct an overlay to our feature ontology (as
opposed to its own layer) because we could have applied it to any
layer. Like shared assets, which could have been introduced into
the ontology from the beginning but which practicality led us to
introduce only when we got to production lines, we find
proliferation bundles to be useful only at the system production
line level.

9. SUMMARY AND CONCLUSIONS
A feature is an abstraction that can describe variations among
products in a way that applies across an enterprise, and be used to
configure the associated artifacts.
The concept of feature allows a consistent abstraction to be
employed when defining and making choices, from a whole
product configuration all the way down to the deployment of
components within a low-level subsystem. Features provide the
common communication vehicle - a lingua franca - among all
stakeholders in the product line, from requirements engineers to
testers, from marketers to executives, from designers to
customers. Our ontology, summarized, is:

• Variation points in shared assets are configured by defined
sets of choices (feature profiles) from primitive features.

• Features and profiles are packaged into feature models to
achieve modularity.

• Production lines are mini-factories that contain related
feature models and assets that they configure.

• Production lines can be structured into a hierarchy, enabling
a system of systems to be represented as a production line of
production lines.

• Choices available to products can be packaged into
proliferation bundles to further reduce combinatoric
complexity.

Error! Reference source not found. summarizes our enterprise
feature ontology, and shows the kinds of roles involved in
decision-making and selection at each level. At each step along
the way, the number of choices available to engineers and other
enterprise stakeholders working at that level shrinks by many
orders of magnitude. A decision space on the order of 21,000,000 (at
the shared asset variation point level) becomes a decision space on
the order of 210-220.

Table 1. Enterprise Feature Ontology and Complexity
Management

Element Purpose Roles that
Utilize

Potential
Complexity

Overlay:
Production
Line
Proliferation
Bundles

Sales Feature
Options. Constrain
proliferation.

Sales
Configuration
Engineers

210 - 220

Level 4:
System
Production
Line

Partially bind and
down-select offered
Matrix Profile
options for a
Product Family.
Proliferation

Product Portfolio
Design Engineers 250

Level 3:
Subsystem
Production
Line with
Product
Profiles

Compose and scope
feature models and
configure shared
assets.

Provide desired
offerings of a
system or
subsystem product
line.

Systems
Engineering,
Product Line
Architects,

Product
Marketing,
Product
Portfolio, System
and Subsystem
Domain
Engineers

2100 - 21000

Level 2:
Feature Model
with Feature
Profiles

Modularize and
scope related
features

Feature
Architects

21000 - 210,000

Level 1:
Primitive
Feature

Root-cause Feature
Abstraction.
functional,
nonfunctional, and
deployment
variation.

System/
Subsystem
Feature
Designers

210,000

Shared Asset
Variation
 Point

Feature-Based asset
 variation
management

Asset Engineers 21,000,000

For smaller production lines with, say, dozens of product
instances, the ontology will produce tractable decision spaces
much earlier. In that case, a few of the ontology’s lower layers
(e.g., features, profiles, and feature models, packaged into a single
production line) can suffice; however, in practice, we observe that

	

most product lines in this size still avail themselves of the
separation of concerns brought about by the production-line-of-
production-lines structure.

We began with a question: How do you bridge the gap between
potentially 1,000,000 variation points in a product line’s shared
assets down to a few dozen customer-facing decisions? Our
feature ontology, which is in industrial use today, is the answer.
This ontology came about through practice and experience, not
speculation or imagination. As Feature-Based PLE made larger
and larger strides into larger and larger product lines (e.g., [6][8]),
each layer in the model was added on top of previous layers as a
result of need. At each level, we combined large numbers of
available choices into smaller numbers of pre-packaged
selections. There is no reason the ontology could not be extensible
in this way by adding still more layers to the top, should the need
arise to work with product lines orders of magnitude larger than
the largest ones today. We look forward to seeing Feature-Based
PLE applied in those settings.

10. REFERENCES
[1] Acher, M., Collet, P., Lahire, P., France, R. “FAMILIAR: A

domain-specific language for large scale management of
feature models,” Sci. Comput. Program. 78(6): 657-681
2013.

[2] BigLever Software, “BigLever Software Gears,”
http://www.biglever.com/solution/product.html

[3] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J.,
Scharadin, R., Shepherd, J., and Winkler, A., “Second
Generation Product Line Engineering Takes Hold in the
DoD,” Crosstalk, The Journal of Defense Software
Engineering, USAF Software Technology Support Center,
2013, in publication.

[4] Czarnecki, K., Helsen, S., Eisenecker, U. “Staged
Configuration Using Feature Models,” International
Conference on Software Product Lines, 2004.
dx.doi.org/10.1007/978-3-540-28630-1_17

[5] Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing
U.S. Army Return on Investment Utilizing Software Product-
Line Approach,” Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC), 2012.

[6] Flores, R., Krueger, C., Clements, P. “Mega-Scale Product
Line Engineering at General Motors,” Proceedings of the
2012 Software Product Line Conference (SPLC), Salvador
Brazil, August 2012.

[7] Gregg, S, Scharadin, R., Clements, P. “The More You Do,
the More You Save: The Superlinear Cost Avoidance Effect
of Systems and Software Product Line Engineering,
Proceedings Software Product Line Conference 2015,
Nashville, 2015.

[8] Gregg, S., Scharadin, R., LeGore, E., Clements, P. “Lessons
from AEGIS: Organizational and Governance Aspects of a
Major Product Line in a Multi-Program Environment,”

Proceedings, Software Product Line Conference 2014,
Florence, Italy, 2014.

[9] Gruber, T.R. (1993). A Translation Approach to Portable
Ontology Specification. Knowledge Acquisition 5: 199-220.

[10] Hubaux, A., Heymans, P., Schobbens, P., Deridder, D.
“Towards Multi-view Feature-Based Configuration,”
International Working Conference on Requirements
Engineering: Foundation for Software Quality, 2010.
http://dx.doi.org/10.1007/978-3-642-14192-8_12

[11] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study” (CMU/SEI-90-TR-021, ADA235785). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon
University, 1990.

[12] Krueger, C., “Multistage Configuration Trees for Managing
Product Family Trees,” Proceedings SPLC2013, Tokyo,
August 2013.

[13] Krueger, C. and Clements, P. “Systems and Software
Product Line Engineering,” Encyclopedia of Software
Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013, in publication.

[14] INCOSE Product Line Engineering International Working
Group,
http://www.incose.org/ChaptersGroups/WorkingGroups/anal
ytic/product-lines, downloaded 09 November 2016.

[15] Noy, Natalya F., and McGuinness, Deborah L., “Ontology
Development 101: A Guide to Creating Your First
Ontology,” Stanford University, Stanford University,
Stanford, CA, 94305,
http://protege.stanford.edu/publications/ontology_developme
nt/ontology101-noy-mcguinness.html, downloaded 09
November 2016.

[16] Parnas, D.L., “On the criteria to be used in decomposing
systems into modules,” Communications of the ACM,
Volume 15 Issue 12, pp. 1053-1058, Dec. 1972.

[17] Rabiser, R., Wolfinger, R., Grunbacher, P. “Three-Level
Customization of Software Products Using a Product Line
Approach,” 42nd Hawaii International Conference on
System Sciences, Big Island HI, 2009.
https://doi.org/10.1109/HICSS.2009.460

[18] Reiser, M., and Weber, M. “Managing Highly Complex
Product Families with Multi-Level Feature Trees,” 14th
IEEE International Conference on Requirements
Engineering, Minneapolis / St. Paul, Sept. 2006.
https://doi.org/10.1109/RE.2006.39

[19] Saitta, Lorenza, and Zucker, Jean-Daniel, Abstraction in
Artificial Intelligence and Complex Systems, Springer
Science & Business Media, 2013.

[20] Wozniak, L., Clements, P. “How Automotive Engineering Is
Taking Product Line Engineering to the Extreme,” Proc.
SPLC 2015, Nashville, 2015.

