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ABSTRACT 
Feature trees have been the standard data structure for 
representing product diversity in feature-based systems and 
software product line engineering (PLE). For basic product lines 
of modest size or complexity, one or several modular feature trees 
can be sufficient for managing the and resolving the variation 
present across the engineering assets in the systems engineering 
‘V’ — from requirements, to design, through implementation, 
verification, validation, documentation, and more — in the 
software, mechanical, and electrical disciplines. However, 
enterprises seeking to adopt PLE at all levels of their organization, 
including areas such as product marketing, portfolio planning, 
manufacturing, supply chain, product sales, product service and 
maintenance, Internet-of-Things, resource planning, and much 
more are finding that thousands of non-engineering users need 
different views and interaction scenarios with a feature diversity 
representation. This paper describes a feature ontology (a 
specification of the meaning of terms in the feature modeling 
realm) that is suitable for managing the feature-based product line 
engineering and operations in the largest and most complex 
product line organizations. This ontology is based on layers of 
abstraction that each incrementally constrain the complexity and 
combinatorics and targets specific roles in the organization for 
greater degrees of efficiency, precision, and automation across an 
entire business enterprise. 
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1. INTRODUCTION 
Product line engineering (PLE) is an approach for engineering a 
portfolio of related products in an efficient manner, taking full 
advantage of the products’ similarities while respecting and 
managing their differences.  By “engineer,” we mean all of the 
activities involved in planning, producing, delivering, deploying, 
sustaining, and retiring products.  However, modern PLE is 
expanding beyond just engineering and into other enterprise-
critical areas such as manufacturing, operations, marketing, 
supply chain management, portfolio planning, and more.  As this 
occurs, the concept of “feature” that has long held sway in the 
engineering realm may no longer be appropriate to these new and 
non-engineering-oriented stakeholders. 

Recently, a form of PLE known as Feature-Based Software and 
Systems Product Line Engineering (“Feature-Based PLE”) has 
emerged as a modern, repeatable, codified, and proven-in-practice 
specialization of generic PLE practice.  Supported by industrial-
strength automation and methodology, Feature-Based PLE is the 
subject of an upcoming ISO standard that is in progress with 
involvement and support from INCOSE through its Product Line 
Engineering International Working Group [14].  Feature-Based 
PLE involves automation-supported configuration of engineering 
artifacts to reflect the feature choices embodied by a product.  
Configuration of artifacts based on feature choices is a powerful 
paradigm, and there are many successful applications of Feature-
Based PLE in the literature [1][3][5][6][7][13].   

As implied by the name, the notion of feature lies at the 
conceptual heart of Feature-Based PLE.  We, along with many 
others, adopt the definition that a feature is a distinguishing 
characteristic that sets products in a product line apart from each 
other [11].   We find this definition to be intuitive, easy to teach, 
and helpfully exclusionary:  In Feature-Based PLE, a capability 
common to all products in a product line is not considered a 
feature. 
And, for small product lines built by small organizations, it has (in 
our experience) been quite sufficient.  However, we find that for 
extremely large product lines (with thousands to millions of 
members) produced by extremely large enterprises (with many 
thousands of engineers and large numbers of non-engineering 
stakeholders), a more textured definition is needed. 

And such organizations are in existence today.  The automotive 
product line at General Motors, for instances, comprises 9-10 
million vehicle instances in some 30,000 unique 
electrical/electronic configurations, all put together by some 5,000 
product line engineers [20].  As we tour the ontology, this is the 
kind of organization to bear in mind. 
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What constitutes a distinguishing characteristic depends on 
organizational roles.  To a test engineer working to fully define a 
test procedure that can be used for one or more products in a 
product line, a distinguishing characteristic might be as fine-
grained as the color of the start button for a piece of equipment:  
Is it red or black?  Such a distinction could not be further from the 
mind of, say, a vice president of product strategy in the same 
company, for whom a distinguishing characteristic might be 
which of her company’s automotive vehicles are going to offer 
autonomous driving three years from now.   

The PLE literature is rife with examples of feature models, 
typically shown in a notional box-and-line representation such as 
provided by FODA [11]. A car might have bucket seats or bench 
seats; a user interface might present in English or German; a 
smartphone might have a five-inch screen or a seven-inch screen; 
and so forth.  Interestingly, those features correspond to neither 
the test engineer’s notion of a distinguishing characteristic nor the 
vice president’s.  Rather, it would seem that they are somewhere 
“in between,” and of (legitimate) interest to stakeholders 
somewhere “in between” the test engineer and the vice president.   

Indeed, others have recognized that “feature” is a concept in need 
of elaboration for application to large multi-role organizations; a 
simple one-size-fits-all notion simply won’t do [10][16][18]. 

This paper takes these observations as a launch point and explores 
how different organizational roles in a large PLE organization 
view “distinguishing characteristics” – that is, features.  The result 
of this exploration is a feature ontology that defines a partitioned 
space into which the kinds of features we described above, and 
more, fit, as well as to describe the kind of enterprise stakeholder 
interested in each partition.  We do this for three reasons: 

• We need to recognize that, for very large organizations, a 
one-size-fits-all definition of “feature” is not helpful for 
people to understand or to use.  Having a fuller and role-
specific picture of what constitutes a feature will help such 
an organization adopt PLE more quickly and effectively. 

• Product line enterprises are now recognizing that feature-
based variant management also has value in organizational 
operations “on the wings” of the engineering lifecycle, in 
areas such as product marketing, portfolio planning, 
manufacturing, supply chain, product sales, product service 
and maintenance, resource planning, financial projections, 
and much more. Thousands of non-engineering users within 
an enterprise need different views and scenarios to interact 
with an all-embracing feature representation. 

• PLE tools that capture and model features will need to 
embrace all of the meanings and distinguish among them in 
order to speak to the many different kinds of users that will 
be viewing, creating, and putting to use all kinds of features 
throughout the product line. 
 

2. ONTOLOGIES 
This paper presents an enterprise ontology for features that is 
suitable for managing feature-based product line engineering and 
operations in the largest and most complex product line 

organizations.  An ontology is an “explicit formal specification of 
the terms in a domain and relations among them” [9], in order to 
“share common understanding of the structure of information 
among people or software agents” [15].  The people are those who 
will use the Feature-Based PLE paradigm.  The “software agents” 
to inform include the PLE tools that are the technological engines 
of the Feature-Based PLE paradigm.   

Our ontology will introduce terminology for features that 
recognize the kinds of levels to which the Introduction alluded.  It 
will have the following characteristics: 

• The levels fully partition the space of features.   No feature 
can be in two levels, which we will call layers. 

• Features in each layer can be described in terms of the 
choices they make available, and instances that reflect 
choices actually made. 

• Features in each layer can be described to typical roles in a 
large organization that will find features at that level useful 
in doing their jobs. 

• The layers are connected to each other as follows:  The 
choices made at a particular layer constitute the choices that 
are available at the next higher level. 

Before we present our ontology, it is necessary to explore the 
form of PLE to which it applies, to see how features and feature 
choices lead to the production of products. 
 

3. FEATURE-BASED PRODUCT LINE 
ENGINEERING:  AN OVERVIEW  
Feature-based PLE uses a reference model that is based on a 
factory metaphor.  The PLE factory produces digital assets across 
the entire lifecycle for products in a product family, analogous to 
a conventional factory producing physical assets and products.  
All development happens inside the factory; the output of the 
factory is for validation and delivery. 
The components of the PLE Factory (Figure 1) are as follows: 
1. A product line’s Feature Catalog is a model of the 

collection of all of the feature options and variants that are 
available across the entire product line.  Feature Owners, 
Feature Architects create their respective sections in the 
feature catalog. 

2. A Bill-of-Features is a specification for a product in the 
product line portfolio, rendered in terms of the specific 
features from the Feature Catalog that are included in the 
product.  In other words, it is a feature-based product 
specification, defined as an instantiation of the available 
feature choices in the Feature Catalog.  The Bill-of-Features 
Portfolio is the collection of Bills-of-Features that, together, 
define the entire product line.  Portfolio teams, typically 
working with product marketing teams, create Bill-of-
Features for product families and “flavors”, based on the 
features available in the Feature Catalog. 



	
 

3. Shared assets are the digital artifacts associated with the 
systems and software engineering lifecycle of the product 
line.  Shared assets can be whatever digital artifacts compose 
a part of a delivered product or support the engineering 
process to create and maintain a product. Shared assets can 
include, but are not limited to, requirements, design 
specifications, design models, source code, build files, test 
plans and test cases, user documentation, repair manuals and 

installation guides, project budgets, schedules, and work 
plans, product calibration and configuration files, data 
models, parts lists, and more.  Assets in PLE are engineered 
to be shared across the product line. In Feature-Based PLE, 
shared assets are maintained as supersets; that is, any content 
needed by any of the products can be found in the superset.  
The supersets include variation points, which are 
declarations that specify under what feature choice 
combinations a specific piece of content is needed and in 
what form it is needed.  Variation point content will be 
included in a product’s digital assets if that feature or feature 
combination has been chosen, and omitted otherwise.  Asset 
engineers create variation points in their subsystem assets, 
based on the Features available in the Feature Catalog.  Asset 
engineers typically specialize into their own specific 
disciplines: Requirements Engineers, System Modeling 
Engineers, Test Engineers, BoM Engineers, Document 
Engineers, and so forth. 

4. The PLE Factory Configurator is the mechanism that 
automatically produces application assets for the digital twin 
of a specific product. In Feature-Based PLE, the configurator 
is an automated tool, as opposed to a manual process.  It 
performs its task by processing the Bill-of-Features for that 
product, and exercising the shared assets’ variation points in 

light of the feature choices in that Bill-of-Features. The 
configurator provides the abstraction-driven automation the 
eliminates the labor-intensive and error-prone activity of 
manually assembling and modifying engineering assets for 
the digital twin for each product in the product line.  An 
example is Gears [1], although there are others as well. 

5. System Asset Instances are product-specific instances of the 
Shared Asset Supersets, automatically produced by the PLE 
Factory Configurator.  System asset instances are validated 
and delivered to the next lifecycle phase (e.g., 
manufacturing), to the customer, or to the market. Suppliers, 
testers, manufacturing, sales and more use the generated 
assets, configured by the Bill-of-Features for a system or 
product family 

The factory operates as follows:  Shared Asset Supersets are 
configured by the PLE Factory Configurator based on a Bill-of-
Features in the Bill-of-Features Portfolio, derived from the 
Feature Catalog, to produce a System Asset Instance.  The 
complete collection of digital engineering assets across the 
systems engineering and software engineering and operations 
lifecycle for a single physical product is sometimes referred to as 
the “digital twin” of that product.  Thus the Feature-Based PLE 
Factory in this reference model gives birth to the digital twin for 
each product in a product line portfolio. 

4. VARIATION POINTS:  THE ULTIMATE  
“DISTINGUISHING CHARACTERISTICS” 
We begin our exploration of the ontology by returning to our test 
engineer from the Introduction, intent on correctly specifying for 
each product whether a start button was red or black (and 
hundreds of other similar details), so that he or she can produce a 
correct test spec for each product. 

Figure 1  Reference model for the PLE Factory in  
Feature-Based PLE 



	
 

Extrapolating that scenario across the whole panoply of 
engineering assets that support the set of products in a product 
line, we can construct a helpful thought experiment. Imagine 
performing a “diff” operation across all of the engineering 
artifacts that represent all of the product instances in a product 
line.  It would sort through, for example, requirements 
specifications, design models, test cases, software, files 
mechanical parts listed in a Bill of Materials, sections or 
paragraphs or even individual words in a user’s manual, slides in 
training courseware, and much more. What would the diff 
operation return?  No doubt: 

• Words, phrases, or lines of requirements 

• Terms or lines of source code 

• Words or lines or paragraphs of test procedures 

• Model elements or attributes in design specs 

And so on – in other words, all of the places where the digital 
engineering representations of any two products differ from each 
other.   

In a product line comprising thousands to tens of thousands of 
instances such as in the automotive domain, for example, there 
may easily be millions of these differences, meaning that the 
variation space is roughly 21,000,000.  While they are undeniably 
“distinguishing characteristics,” albeit tiny ones, and undeniably 
important to manage correctly, it becomes immediately clear that 
they cannot be what we wish to consider as features:  No 
organization could create and manage a bank of millions of 
features.  Nor do these tiny differences lend any insight into 
meaningful ways in which products differ from each other.  
Thus, there cannot be a one-to-one correspondence between a 
feature and a variation in an engineering artifact.  We need a more 
abstract concept to power the Feature-Based PLE approach in a 
practical and powerful way. 

5. FEATURES ARE ABSTRACTIONS 
Let us accept that features cannot correspond one-for-one with 
variations in product artifacts (which we can now call System 
Asset Instances based on our picture of Feature-based PLE).  In 
order for a Feature Catalog to be tractable to represent and 
manage, a feature needs to be more powerful than a switch that 
turns tiny bits of content on and off in each Shared Asset 
Superset.  Therefore, in order to realize the Feature-based PLE 
narrative (feature choices are used to configure engineering 
artifacts), there must be a one-to-many correspondence between 
features and engineering artifact variation1.   

Happily, another word for a one-to-many mapping is abstraction 
[19], which is exactly the concept we need:  Features are 
abstractions of variations; one feature can “drive” multiple (many) 
artifact-level variations. This one-to-many mapping matches our 
engineering intuition about features:  If a capability is included in 
a system, then requirements, design elements, source code, test 
                                                                    
 
 
 
1 This means that each feature serves a role in potentially many 

variation points.  In practice, a variation point’s resolution may 
depend on more than one feature, combined using normal 
Boolean operators:  (Feature1 OR Feature2) AND NOT Feature 
3, and so forth. 

cases, user documentation and more, all corresponding to that 
capability, should be included in the product’s digital twin.  If the 
capability is omitted, then all of that material should be omitted.  

It also matches our practical intuition about features.  To elicit the 
distinguishing characteristics among products, we would not 
expect our product portfolio experts to tell us about differences in 
lines of code or test cases.  Rather, we would expect to hear about 
more abstract differences expressed in terms of capability, 
function, usage environment, etc.   
It turns out that each layer of our feature ontology provides an 
abstraction – a many-to-one mapping – of the layer beneath it. 

6. ABSTRACTIONS HAVE INSTANCES 
We only need one more concept before we can describe our 
ontology, and our test engineer will once again help us to 
verbalize it. 

The test engineer is worried about the button color because on 
some products the button is red whereas on other products the 
button is black.  That is, there is a choice available between red 
and black, but each individual product will reflect a choice made 
of either red or black. 

Likewise, every level in our feature ontology will define a space 
of choices available, against which individual products will be 
assigned a choice made.   Bench seats or bucket:  Those are the 
choices available.  The sports car will have bucket chosen for it, 
whereas the sedan will get bench.  
With these concepts – different levels of features appropriate for 
different organizational concerns, features as abstractions, and 
choices available and choices made – we are ready to introduce 
our feature ontology. 

7. ENTERPRISE FEATURE ONTOLOGY 
7.1 ONTOLOGY LAYER 1:  PRIMITIVE 
STANDALONE FEATURES 
A primitive standalone feature is a single distinguishing 
characteristic that can “drive” the setting of one or more variation 
points in one or more Shared Asset Supersets.  It is characterized 
not in terms of the specific variation point content but rather as a 
more abstract characterization of a product. 

Each primitive standalone feature, by its very existence, 
constitutes and establishes a choice to be made on behalf of each 
product.  The choice can be whether the feature is present or not, 
and/or which flavor or flavors of the feature can be chosen.  In the 
latter case, there are also rules about whether the flavors are 
mutually exclusive or not; that is, whether or not you are allowed 
to choose more than one flavor for a product.  A “flavor” may 
itself be a primitive standalone feature, leading to the notion of a 
tree of features. 

• Roles of concern:  Engineers concerned with specific 
product capabilities work with primitive standalone features. 

• Data structure:  A primitive standalone feature is a name 
(the name of the feature) and a set of choices available (such 
as in, out, and/or a list of flavors).   

• Representation:  A primitive standalone feature is 
conveniently (but not necessarily) represented graphically, 
using a tree-shaped box-and-line structure.  A type may be 
introduced to constrain the choices; for example: 

o A Boolean type limits the choice to whether the 
feature is selected or not 



	
 

o An enumeration type requires exactly one flavor to be 
chosen 

o A set type allows any number of flavors to be chosen.  

o Flavors themselves may have types such as “integer” 
or “string,” which limit the values they may take on. 

• Instance:  We call a choice made against a primitive 
standalone feature a standalone primitive feature instance.  A 
valid instance obeys the rules imposed by the types. 

• Effect on complexity:  The point of a single primitive 
standalone feature is that it may configure multiple variation 
points in multiple shared asset supersets.  If it configures on 
the order of 10 variation points, then our variation space of 
millions in the shared asset superset realm reduced to a 
variation space measured in the hundreds of thousands 
overall.  An individual engineer is likely to be concerned 
with primitive standalone features numbering in the dozens. 

 
Figure 2  Three examples of primitive standalone features 

Making features abstract with respect to specific variation points 
in specific engineering artifacts reduces the number possibilities 
by orders of magnitude.  A product line as large as the portfolio of 
a company like General Motors may comprise on the order of ten 
thousand features like the ones we are describing here [6].  For a 
company as large as General Motors, with thousands of engineers 
working in the product line context, ten thousand is a manageable 
amount. 

7.2 ONTOLOGY LAYER 2:  BUNDLING 
PRIMITIVE STANDALONE FEATURES 
INTO FEATURE MODELS 
We find that primitive standalone features are conceptually very 
helpful but in practice too fine-grained to be an ongoing focus of 
attention.   In product lines of complex systems, product line 
engineers tend to be assigned to specific areas of knowledge and 
expertise, and the variation in these areas transcends individual 
features.  A bundled construct is more helpful to let them capture 
variation in those broader areas.  A bundle of individual features 
also is a place where constraints on choices can be conveniently 
expressed and captured – for example, that two features are 
mutually exclusive (so at most one may be chosen) or mutually 
required (so that zero or both must be chosen). 
We call this bundle a feature model.  

• Roles of concern:  Product line engineers who are concerned 
with variation in a specific area of a system that transcends 

individual features work with feature models.  These are 
typically subject matter experts for a specific area of 
capability within a product.  They may collaborate with the 
portfolio planning organization to determine which 
differentiating characteristics should be offered as primitive 
feature choices. The list of feature profiles that should be 
offered of also determined and defined by the subject matter 
experts collaborating with the business to determine which 
offerings are technologically feasible and provide the best 
economic return for the enterprise. 

• Data structure: A feature model is essentially a 
concatenation of a set of primitive standalone features.   

• Representation: A feature model is conveniently (but not 
necessarily) represented as a tree structure, with the roots of 
the individual primitive features becoming children of a new 
parent root node. 

• Instance: An instance of a feature model is called a feature 
profile.  Each feature profile is assigned a name, which 
describes (and stands in for) the set of choices made against 
the choices made available by the feature model. 

• Effect on complexity: We find that a typical feature model 
combines on the order of ten primitive standalone features.  
Smaller ones are certainly possible.  Larger ones are certain 
possible as well, but we find that feature models with many 
more than ten features become difficult to grasp.   We also 
find that a typical feature model offers on the order of ten or 
so feature profiles.  Thus, overall, it is not unusual to see 
feature models with up to 100 or so features offered with a 
dozen or less feature profiles, thus reducing the available 
choices by more orders of magnitude.  Our complexity space 
is now around 21000. 

 
Figure 3 Feature model that bundles the three primitive 

standalone features of Figure 2 

7.2.1 Feature Models as Modularity Constructs 
Just as large software systems are composed into coherent 
modules, to facilitate ease of change and productive work by 
separate members of a large team [16], so it is with feature 
models.  The bundling manifested by a feature model provides a 
cleanly packaged and coherent set of features, to achieve ease of 
change and to enable productive work by members of a team. 

Feature models have names and, in practice, generally correspond 
to specific capabilities, or subsystems, or some other generally 
acknowledged unit of system decomposition.  Feature models 
may also be used to distinguish between customer-facing features 
(for example, would you like a cruise control on your car that 
detects the car ahead of you and keeps you from running into it?) 
and inward-facing or implementation-oriented features (to detect a 
car in front of us, shall we use a camera on the front bumper, a 
LIDAR sensor, or a short-range radar?).  Both decisions represent 
important and legitimate feature choices, but are meaningful to 
different audiences, and so it is convenient to put them in different 
feature models.  Assuming any of the inward-facing choices 
would do the job, the actual decision there is based not on 



	
 

functionality, but on the achievement of quality attributes:  this 
sensor costs less, but that sensor weighs less and produces less 
heat; however we happen to have a warehouse full of this other 
sensor, all ready to use. 

Just as dividing software into parts requires keen architectural 
insight and ability, defining the scope of a feature model requires 
the same kind of architectural thinking.  Just as a software module 
should have high cohesion, features in a feature model should be 
similarly cohesive, and a feature model should be assigned to an 
appropriate subject matter expert (or team) to own and manage its 
content and evolution. 

Typically, a particular shared asset, such as a requirements 
module, source code component, or test suite, won’t need all of 
the features to configure its variation points.  Instead, one or a few 
feature models will often suffice. Later in the ontology, we’ll see 
how to make use of this. 

7.2.2 Feature Profiles as Supported Bundles of 
Primitive Feature Instances 
A feature model such as one in Figure 3 only lays out choices that 
are available.  Someone has to actually choose, and we need a 
way to record the choices.   
We could let people browse through the feature model and choose 
any combination of features present.  However, this quickly 
reveals itself to be an undesirable choice. Combinatorics of 
feature models are such that even quite modest feature models 
may lead to many thousands of possible choice combinations – 
too many to implement and too many to test. 

Thus, we don’t want to let people pick and choose among 
individual features.  Rather, we want to offer only those sets of 
pre-packaged choices that (a) contribute to products that are 
technically and economically feasible to engineer and build; and 
(b) contribute to products that a customer or the market would 
actually want to buy.   Feature profiles serve that role.  A feature 
profile represents a unique and supported configuration of a 
feature model.  These, then, are the combinations we are willing 
to build and test and offer to the product line at large – not just 
any combination at random, but a set that has been identified with 
analysis and forethought. 

Figure 4 illustrates a feature profile for the feature model shown 
in Figure 3.  Graphically, it replicates Figure 3 except that now 
checkboxes are filled in, indicating the choices made. 

 
Figure 4   A feature profile for the feature model shown in 

Figure 3 
 

7.2.3 Feature Model as a Higher-Order Feature 
Abstraction 
The feature model and its list of named feature profiles together  
represent a higher order feature abstraction in our feature 
ontology.  A named feature model (Power Door Locks in our 
example) becomes a single higher-order feature that encapsulates 
and hides the details of its primitive feature model tree. Each 
named feature profile becomes a single higher-order choice and 

the list of named feature profiles become a higher-order 
enumeration of mutually exclusive choices for the higher-order 
feature model.  

7.3 ONTOLOGY LAYER 3:  BUNDLING 
FEATURE MODELS INTO SUBSYSTEM 
PRODUCTION LINES 
After primitive standalone features are assembled into feature 
models and their individual feature instances bundles into feature 
profiles, the result is a collection of feature models and feature 
profiles that can still be quite large – possibly thousands of feature 
models (and tens of thousands of feature profiles) in a large 
product line.   

Also, our heuristic of not wanting feature models to be too large 
(and therefore difficult to comprehend, work with, and change) 
has led us to have multiple feature models that may belong to the 
same subject matter area.  A construct to bundle those would be 
helpful. 

Furthermore, remembering that the ultimate objective of features 
is to configure shared assets into product-specific System Asset 
Instances, there needs to be an ontological element that combines 
one or more feature models and the Shared Asset Supersets that 
are configured, so that the PLE Factory Configurator can apply 
the former to the latter.   

(It would have been possible to “attach” assets to either of the 
previously described layers. In fact, for consistency’s sake, purists 
can consider assets to be attachable at any layer.  To be attached, 
the scope of the asset’s subject matter should match the scope of 
the features captured at that layer.  In practice, however, we find 
that the number of assets matching that description for standalone 
primitive features and individual feature models tends towards 
zero, so we delayed introducing shared assets until this point in 
the ontology.) 
These combined needs – bundling related and not-too-large 
feature models while introducing shared assets to be configured 
by feature choices in a coherent subject matter area – lead us to 
the next layer in our ontology.   This encapsulation for one or 
more feature models and assets is a subsystem production line. 

• Roles of concern:  The roles responsible for engineering the 
subsystem production line are typically systems engineering 
experts for a subsystem within a product.  They may 
collaborate with the portfolio planning organization to 
determine which differentiating characteristics should be 
offered as higher-order feature choices.  The list of 
production line profiles that should be offered of also 
determined and defined by the systems engineering experts 
collaborating with the business to determine which offerings 
provide the best economic return for the enterprise. 

• Data structure:  The choices available in a subsystem 
production line are the choices made available by the 
constituent feature models – that is, their feature profiles.  If 
a production line includes four feature models, then there are 
four choices available at the production line level – the 
feature profile for each feature model.   

• Representation: This can be represented graphically using a 
tree structure similar to that for feature models.  Each feature 
model would be assigned one node; its feature profiles would 
be its children; its type would effectively be Enumeration 
(one choice only).   Since the depth of a tree will not exceed 
one level below the root, another convenient form of 
representation is a matrix.  Each row specifies a set of 



	
 

choices; there is one column for each feature model.  A cell 
holds the choice of profile for that column’s feature model, 
for that row’s choice bundle.  (We will assume the matrix 
form of representation from here on.) 

• Instance:   The instances at this level are named, bundled 
combinations of instances at the next lower level – that is, 
feature profiles.  For example, if our production line contains 
feature models PowerDoorLocks (with profiles Passive, 
Physical, and Auto) and FuelFillerDoorUnlock (with feature 
profiles Manual, InCabin, and Remote) then instances might 
be   

o HighEnd: {Auto, Remote}  
o LowEnd: {Physical, Manual}.    

HighEnd and LowEnd would then (using the matrix 
representation) become the names of matrix rows, and 
constitute bundled offerings to the next higher layer in the 
ontology.  We call HighEnd and LowEnd production line 
profiles. 

• Effect on complexity:  Because subsystem production lines 
typically combine on the order of ten or so feature models, 
our variation space is now roughly 2100. 

Figure 5 shows a subsystem production line called Entry Controls 
that (using the matrix representation) combines the offerings 
(feature profiles) of three feature models (PowerDoorLocks, 
RearEnclosureUnlock, and FuelFillerDoorUnlock into seven 
offerings (production line profiles) of its own.   This matrix shows 
that, for the first three offerings, the choice for 
FuelFillerDoorUnlock is to omit it entirely – always a possibility. 

 
Figure 5  A matrix that combines choices from three feature 

models. 

7.3.1 Subsystem production lines as modularity 
constructs 
Defining the scope of a subsystem production line is, like scoping 
a feature model, also an architectural activity.  We find that, at 

this level, a production line will often represent a subsystem that 
is part of the products of the product line, with the shared assets 
associated with that subsystem. 

Each production line has in it the set of feature models that 
contain the features needed to configure the variation points in 
those assets.  If the feature model is defined to be part of the 
production line, it can be said to be owned by that production line.  
But sometimes a production line needs to refer to other feature 
models in order to configure an asset.  In that case, it can import a 
feature model (by reference) from the owning production line. A 
feature model can be owned by one production line, but imported 
into multiple production lines if its features are crosscutting – a 
common occurrence.  Imported feature models are used to manage 
feature dependencies and constraints on feature selections across 
subsystems. 

7.3.2 Subsystem Production Lines as Higher-Order 
Feature Abstractions 
The subsystem production line and the list of named production 
line profiles represent, once again, a higher order feature 
abstraction in our feature ontology.  A named production line 
(Entry Controls in our example) now becomes a single higher-
order feature that encapsulates and hides the low level details in 
its collection of feature models and feature profile choices. Each 
named subsystem production line becomes a single higher-order 
feature offering the choices enumerated in (for example) its 
matrix.  To the outside, our example looks exactly like an 
Enumeration feature named Entry Controls with seven possible 
and mutually exclusive flavors. 

It is not unusual to see a production line with millions of possible 
combinations of profile combinations having ten or less 
production line profiles, thus once again reducing the available 
choices by orders of magnitude. 

7.4 ONTOLOGY LAYER 4:  BUNDLING 
SUBSYSTEM PRODUCTION LINES INTO 
SYSTEM PRODUCTION LINES 
Subsystem production lines tend, in practice, to capture the 
variation and shared assets associated with a subsystem.  A 
subsystem may be clearly identified in a common architecture for 
the product line, or it may be informally identified by the presence 
of a dedicated group of people who work on it, and a collection of 
shared assets devoted to engineering it. 

Clearly another level of scope beckons.  We need to bundle 
subsystem production lines into product offerings at the system or 
whole-product level. 

After all of the feature models are partitioned into subsystem 
production lines, the result is a collection of production lines that 
can still be quite large – possibly hundreds or even thousands of 
production lines in a large product line, as may be found in the 
automotive industry [20].  There subsystem production lines may 
exist for brakes, transmissions, lighting, infotainment, entry 
controls, climate control, and a whole host more. 

Since production lines act as higher-order features in the ontology, 
we can extend the definition of a production line to also include 
other production lines, resulting in a hierarchy, or tree (see Figure 
6).  In this way, we can mirror a system-of-systems architecture 
with a production-line-of-production-lines hierarchy.  The 
constituent production lines provide places to make feature 
decisions corresponding to that part of the system-of-systems 
structure.   



	
 

• Roles of concern:  Anyone concerned with the variation of 
systems at the highest level is concerned with the system 
production lines.  This can include portfolio planners and 
managers, marketers and business development specialists, 
and the engineering and business leadership in a business 
area or the enterprise at large. 

 
Figure 6 Subsystem production lines bundled into a system 
production line.  An imported production line appears as a 

column in the matrix of its parent, the importing production 
line.  Rows in the imported production line become available 

as cell choices in that column. 
 

• Data structure: The same as for subsystem production lines. 

• Instance:  Each instance of a system production line is a 
Bill-of-Features, as illustrated in Figure 1.  A Bill-of-

Features is the ultimate feature-based description for a whole 
product. 

• Effect on complexity: Each level in the production line 
hierarchy often provides a one- to two-orders of magnitude 
reduction in the combinatoric complexity by limiting the 
number of specified profiles relative to the number of 
possible profiles.  A two- or three-level hierarchy (typical, in 
our experience) yields a complexity space of about 250. 

Once again, defining the production line hierarchy is much like 
scoping an individual production line or scoping a feature model – 
it is an architectural activity. In this case the architectural 
objective is aligning it to a system-of-systems structure.  The 
production line hierarchy can go to any level of depth.  Each level 
in the hierarchy represents a new level of abstraction, where the 
production line becomes a new higher-order feature and its 
production line profiles (rows in the production line matrix) 
become the available choices for that higher order feature. 

Finally, although the concept could be applied theoretically at 
lower levels in the ontology, we find that this is a particularly 
helpful place to introduce staged configuration [4][12].  This is 
essentially a mechanism that allows different stakeholders, each 
with specialized knowledge about the choices appropriate for a 
product, to make their choices in a way to produce a coherent, 
consistent whole product. 

8. OVERLAY: PROLIFERATION 
BUNDLES  
At this point in our ontology, we are down to defining a product 
by making choices numbering in the dozens, say 50 or so.  For 
very large production lines, the number might be in the hundreds, 
but 50 is a nominal number to consider going forward.   
Organizations that specify thousands or tens of thousands of 
products don’t want to painstakingly fill out a matrix row for 
every one of them.  Modern PLE Factory Configurators have a 
“proliferate” feature that can automatically produce rows in a 
matrix at the leaf of the hierarchy for every combination of profile 
choices that are still unbound.  A proliferated matrix lays out all 
the choices for all the products that we can now, for example, take 
to manufacturing. 

However, 50 or so choices still leaves us with 250 possible 

Figure 7: Proliferation bundles 



	
 

combinations of choices, which means we could define 217 (about 
131,000) absolutely unique products for every one of the 233 
people on Earth.  Before we push the “proliferate” button, we 
need a way to further pare down the choices. 

In the same way that feature profiles reduced the potential 
complexity inherent in primitive feature models, we will use 
proliferation bundles to whittle down the potential choices.  The 
idea is to create meaningful bundles of the unbound selections to 
limit proliferation. 
Figure 7 illustrates the concept.  At the top is a template matrix 
with eight columns A-H.  We have annotated the number of 
choices that remain available in each column:  There are 16 
choices available for A, 10 for C, 7 for E, and 8 for H.  All other 
columns have fully bound selections.  At this point we have the 
possibility of 16 x 10 x 7 x 8 = 8960 unique products.  This is too 
many; this wide variety would overwhelm our manufacturing 
capability.   

We realize that we don’t need or want the 70 combinations 
possible from columns C through F.  Instead, we decide that we 
create a bundle called VX that offers 4 combinations instead.  By 
defining that bundle and letting subsequent (descendant) matrices 
choose from its choices, we have slashed our possible number of 
products to 512.   
These manufacturing bundles, in which combinations of different 
features are limited and offered as packages, are common in the 
automotive industry.  General Motors calls them “Regular 
Production Options;” other auto-makers have their own 
terminology.  These so-called “RPO codes” comprise feature 
bundles that are available to a customer, such as a Sports package 
that combines a high-performance engine, a particular 
transmission, a tight suspension system, a prescribed steering 
wheel cover, external paint trim, and more. 

Proliferation bundles have, for very large product lines, finally 
brought us down into a decision space that is manageable, 
understandable, and manufacture-able. 

We call this construct an overlay to our feature ontology (as 
opposed to its own layer) because we could have applied it to any 
layer.  Like shared assets, which could have been introduced into 
the ontology from the beginning but which practicality led us to 
introduce only when we got to production lines, we find 
proliferation bundles to be useful only at the system production 
line level. 

9.    SUMMARY AND CONCLUSIONS 
A feature is an abstraction that can describe variations among 
products in a way that applies across an enterprise, and be used to 
configure the associated artifacts.   
The concept of feature allows a consistent abstraction to be 
employed when defining and making choices, from a whole 
product configuration all the way down to the deployment of 
components within a low-level subsystem. Features provide the 
common communication vehicle - a lingua franca - among all 
stakeholders in the product line, from requirements engineers to 
testers, from marketers to executives, from designers to 
customers. Our ontology, summarized, is: 

• Variation points in shared assets are configured by defined 
sets of choices (feature profiles) from primitive features.   

• Features and profiles are packaged into feature models to 
achieve modularity.   

• Production lines are mini-factories that contain related 
feature models and assets that they configure.   

• Production lines can be structured into a hierarchy, enabling 
a system of systems to be represented as a production line of 
production lines.   

• Choices available to products can be packaged into 
proliferation bundles to further reduce combinatoric 
complexity. 

Error! Reference source not found. summarizes our enterprise 
feature ontology, and shows the kinds of roles involved in 
decision-making and selection at each level. At each step along 
the way, the number of choices available to engineers and other 
enterprise stakeholders working at that level shrinks by many 
orders of magnitude.  A decision space on the order of 21,000,000 (at 
the shared asset variation point level) becomes a decision space on 
the order of 210-220. 
  

Table 1.  Enterprise Feature Ontology and Complexity 
Management 

Element Purpose Roles that 
Utilize 

Potential 
Complexity 

Overlay:  
Production 
Line 
Proliferation 
Bundles 

Sales Feature 
Options. Constrain 
proliferation. 

Sales 
Configuration 
Engineers 

210 - 220 

Level 4: 
System 
Production 
Line 

Partially bind and 
down-select offered 
Matrix Profile 
options for a 
Product Family. 
Proliferation 

Product Portfolio 
Design Engineers 250 

Level 3: 
Subsystem 
Production 
Line with 
Product 
Profiles 

Compose and scope 
feature models and 
configure shared 
assets.  

Provide desired 
offerings of a 
system or 
subsystem product 
line. 

Systems 
Engineering, 
Product Line 
Architects, 

Product 
Marketing, 
Product 
Portfolio, System 
and Subsystem 
Domain 
Engineers 

2100 - 21000 

Level 2: 
Feature Model 
with Feature 
Profiles 

Modularize and 
scope related 
features 

Feature 
Architects 

21000 - 210,000 

 

Level 1: 
Primitive 
Feature 

Root-cause Feature 
Abstraction. 
functional, 
nonfunctional, and 
deployment 
variation. 

System/ 
Subsystem 
Feature 
Designers 

210,000 

Shared Asset 
Variation 
 Point 

Feature-Based asset 
 variation 
management 

Asset Engineers 21,000,000 

 

For smaller production lines with, say, dozens of product 
instances, the ontology will produce tractable decision spaces 
much earlier.  In that case, a few of the ontology’s lower layers 
(e.g., features, profiles, and feature models, packaged into a single 
production line) can suffice; however, in practice, we observe that 



	
 

most product lines in this size still avail themselves of the 
separation of concerns brought about by the production-line-of-
production-lines structure. 

We began with a question:  How do you bridge the gap between 
potentially 1,000,000 variation points in a product line’s shared 
assets down to a few dozen customer-facing decisions?  Our 
feature ontology, which is in industrial use today, is the answer.  
This ontology came about through practice and experience, not 
speculation or imagination.  As Feature-Based PLE made larger 
and larger strides into larger and larger product lines (e.g., [6][8]), 
each layer in the model was added on top of previous layers as a 
result of need.  At each level, we combined large numbers of 
available choices into smaller numbers of pre-packaged 
selections. There is no reason the ontology could not be extensible 
in this way by adding still more layers to the top, should the need 
arise to work with product lines orders of magnitude larger than 
the largest ones today.  We look forward to seeing Feature-Based 
PLE applied in those settings.  
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