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Mainstream forces are driving Systems and Software Product Line Engineering 

(PLE) approaches to take a more holistic perspective that is deeply integrated 

into the systems and software engineering lifecycle. PLE challenges will not be 

solved at any one stage in the product engineering lifecycle, nor will they be 

solved in independent and disparate silos in each of the different stages of the 

lifecycle. This paper describes BigLever Software’s response to these forces – a 

PLE Lifecycle Framework.  

The motivation for this technology framework is to ease the integration of tools, 

assets, and processes across the full systems and software engineering lifecy-

cle.  The framework provides product line engineers with a common set of PLE 

concepts and constructs for all of their tools and assets, at every stage of the 

lifecycle, and to assure that product line engineering traceability and processes 

flow cleanly from one stage of the lifecycle to another.  

1. Introduction 

According to Geoffrey Moore’s classic hi-tech marketing book Crossing the Chasm, 
widespread adoption of a new hi-tech offering requires more than just a great concept, 
technique, technology, or product. The mainstream majority of users require a com-
plete solution. Although a small percentage of potential users –  Innovators and Early 
Adopters according to Moore – are willing to take on the task of extending new ideas 
and technology into a complete and workable solution, the majority of users that 
make up the mainstream – the Early Majority and Late Majority – are simply unwill-
ing or unable to dedicate the resources needed to innovate complete solutions out of 
promising concepts, techniques, technologies, and tools [1]. 

These mainstream forces from the early majority and late majority contingents require 
Systems and Software Product Line Engineering (PLE) approaches to provide holistic 
solutions that are deeply integrated into the full engineering lifecycle. We describe 
here BigLever Software’s response to these forces – the PLE Lifecycle Framework for 
the full systems and software product line engineering lifecycle. 

The PLE Lifecycle Framework is a key ingredient to a complete, out-of-the-box PLE 
solution that enables easy adoption by mainstream organizations. It provides an inte-
gration framework for engineering tools, assets, and processes across the systems and 
software engineering lifecycle. The PLE Lifecycle Framework offers engineers and 
managers a common set of PLE concepts, constructs, and capabilities for all of their 
existing tools and assets, at every stage of the lifecycle.  

When used in conjunction with BigLever’s 3-Tiered PLE Methodology [2], the PLE 
Lifecycle Framework offers a straightforward transition path from legacy approaches 
to a complete PLE solution. The PLE Lifecycle Framework has enabled organizations 
with some of the largest, most sophisticated, and complex safety-critical systems ever 
built to adopt the PLE approach [5]. 

2. Importance of the PLE Lifecycle 

A fundamental tenet of product line engineering is that product line variation must be 
simultaneously managed along two dimensions, time and space [3]: 
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• variation in time, to manage asset evolution, or multi-baseline management; 

• variation in space, to manage diversity within assets and products in the product 
line -- that is, multi-product management. 

Practical experience with numerous commercial PLE deployments at BigLever Soft-
ware has illuminated an equally important third dimension that must be addressed to 
provide a complete PLE solution for mainstream product line engineering organiza-
tions: 

• variation in the lifecycle, to provide consistency and to manage traceability among 
asset variations in different lifecycle stages (i.e., multi-phase management) 

These three dimensions -- multi-product in the domain space, multi-phase across the 
lifecycle, and multi-baseline in time  -- are illustrated in Figure 1.  

Figure 1.  The Three Dimensions of a Complete PLE Solution 

The importance of the additional multi-phase lifecycle dimension for providing a 
complete end-to-end solution can be attributed to the importance of: 

• Engineering process management. Well defined engineering processes are common 
in mainstream organizations, often due to large size but also to external contractual 
or legal governance. As a result, the engineering lifecycle is usually explicitly de-
fined by these organizations, within each lifecycle stage and across the boundaries 
between each of the stages. 

• Systems and software engineering. Software – the primary focus in the early histo-
ry of product line engineering – is often engineered within the larger context of a 
system. Embedded software in mechanical systems is an obvious example, though 
other common examples include enterprise and web-based software designed in the 
specific context of server, network, or specialty hardware and IT system architec-
tures.  For systems in which software does not play a major role in the end product, 
the engineering assets supporting those systems’ development and sustainment (for 
example, requirements, or design models, or test cases) are represented or manipu-
lated with software or software tools.  As a result, the engineering lifecycle in-
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cludes the combined systems and software perspective for requirements, architec-
tures, models, documentation, test plans, and so forth, rather than just a narrow 
software-only product line perspective. 

When transitioning to a PLE approach, a complete solution must retain the holistic 
lifecycle focus and capabilities. That is, a complete solution must simultaneously 
manage systems and software product line commonality and variability in all three 
dimensions of time, space, and lifecycle. 

2.1. The Need for a PLE Lifecycle 

One of the key capabilities of a good engineering lifecycle solution is traceability [4]. 
For example, every requirement should be traceable to one or more design elements 
that satisfy that requirement and each design element should be traceable back to one 
or more requirements that it satisfies. Each design element should be traceable for-
ward to its implementation and vice versa. Each requirement should be traceable to 
and from one or more test cases that validate whether or not the requirement is satis-
fied in the final product. 

For the lifecycle of an individual product, traceability is represented as a static set of 
relationships among the assets in the lifecycle (e.g., requirements, architecture, de-
sign, source code, test cases, documentation). Of course, as the software assets evolve 
over time, the traceability relationships also evolve. In fact, traceability relationships 
are intended to facilitate evolution by indicating which related artifacts need to 
change whenever any traceable artifact is modified. Thus, traceability for a single 
product applies to the multi-baseline and multi-phase dimensions of Figure 1. 

When traceability is applied to a product line rather than an individual product, the 
third dimension – multi-product – must now be accommodated as well. Similar to the 
case of an individual product, traceability among the parts of assets that are common 
to all products is represented as a static set of relationships. However, for the parts of 
the assets the vary from product to product, the traceability relationships in and out of 
these asset “variation points” also vary. This is where most PLE concepts, technology, 
tools, and techniques fall short. 

Imagine that a requirements engineering team has embraced a PLE requirements 
management technique based on tagging requirements in a requirements database 
with attributes that differentiate capability variations in requirements.  Imagine that 
the design team has adopted a UML tool and has embraced inheritance as the mecha-
nism for managing PLE design variations. The development team is using a FODA 
feature model drawn in a graphical editor, plus #ifdefs, build flags, and configuration 
management (CM) branches to manage PLE implementation variations.  Finally, the 
test team has adopted clone-and-own of test plan sections, stored in appropriately 
named file system directories for each product to manage their PLE test plan varia-
tions. 

Now imagine what would be needed to create a complete PLE lifecycle solution that 
integrates into a larger business engineering model. How do the requirements data-
base attributes and tagged requirements relate and trace to the subtypes and super-
types in the design models? How do these attributes and supertypes relate and trace to 
the #ifdef flags, CM branches, FODA features, and test case product-specific cloned 
directories?  

Without answers to these questions, it is not possible to define a lifecycle process that 
flows cleanly from one stage of the lifecycle to another. Trying to translate between 
the different representations and characterizations of capabilities, features and product 
variations creates dissonance at the boundaries between stages in the lifecycle. 

This example illustrates that a complete PLE solution cannot be built with concepts, 
technology, tools, and techniques at any one stage of the lifecycle. Nor can it be built 
with a combination of disparate point solutions at different stages. 
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3. The PLE Lifecycle Framework 

To meet the needs of engineering organizations for a complete systems and software 
product line engineering solution, BigLever Software created the Gears PLE Lifecy-
cle Framework. This framework supports all three of the PLE solution dimensions 
illustrated in Figure 1 – multi-baseline in time, multi-product in the domain, and mul-
ti-phase in the lifecycle. The motivation for this technology framework is to ease the 
integration of engineering tools, assets, and processes across the full systems and 
software engineering lifecycle. 

The goal is to provide product line engineers with a common set of PLE concepts and 
constructs for all of their tools and assets, at every stage of the lifecycle. Furthermore, 
the goal is to apply these concepts and constructs uniformly, so that traceability and 
engineering processes flow cleanly from one lifecycle stage to another – for systems 
analysts, requirements engineers, architects, modelers, developers, build engineers, 
document writers, configuration managers, test engineers, field engineers, project 
managers, product marketers, and so forth. 

The PLE Lifecycle Framework is an integration framework for engineering tools and 
assets. It is narrowly focused on the PLE issues of feature-based variation manage-
ment in the product space, and asset variation management in the lifecycle phases.  
This enables the third dimension (time) to be managed under the PLE methodology 
with conventional change, configuration and baseline management. 

The PLE Lifecycle Framework provides product line engineering organizations the 
following [5][6]: 

• A consolidated feature model to uniformly express product diversity, for assets in 
any stage of the systems and software engineering lifecycle, including require-
ments, architecture, models, design, source code, test cases, and documentation. 

• Standardized variation point constructs that can be uniformly applied to any engi-
neering tool and its associated assets in any stage of the systems and software en-
gineering lifecycle, including tools and assets for requirements management, mod-
el-driven development, mechanical design, electrical design, source code develop-
ment, test case development, configuration management, build automation, change 
management, and document development. 

• An automated product configurator that uniformly assembles and configures assets 
from each stage of the engineering lifecycle to automatically produce any of the 
engineering assets in a product line. 

An example product line engineering environment based on BigLever’s Gears PLE 
Lifecycle Framework is illustrated in Figure 2.  Key elements of the framework are: 

• Feature Catalog. The Feature Catalog contains all the feature options available for 
all the products in that product line, and is used by individuals and teams across the 
lifecycle, and across organizational functions. 

• Bill-of-Features. The features chosen for each product are specified in the Bill-of-
Features for that product. 

• Shared PLE Assets, such are requirements, design models, source code and test 
cases.  Shared PLE assets contain feature-based variation points that can be config-
ured in different ways to reflect the feature selections in a feature profile. 

• Gears Product Configurator.  The product configurator automatically configures 
all of the shared PLE assets for a product instance, based on the feature selections 
in a feature profile. 

On the right half of the diagram shown in Figure 2 is the full set of product instances 
that can be produced by the product configurator in the framework. There is a one-to-
one correspondence to the feature profiles and the product instances – each feature 
profile is used by the product configurator to automatically configure the assets for 
the corresponding product instance. Note that all the assets from the full engineering 
lifecycle are produced for each of the products in the product line. 
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The underlying PLE technology for the framework, such as the configurator, feature 
profiles and variation points, is described in [5][6]. Similarly, the underlying PLE 
methodology is described in [2]. 

The PLE Lifecycle Framework provides the critical lifecycle dimension needed for a 
complete PLE solution. 

4. Common PLE Constructs and Concepts Across the 

Lifecycle 

To overcome the problem of dissonant PLE concepts, technology, tools and tech-
niques imposing disparate PLE silos in the engineering lifecycle, BigLever’s PLE 
Lifecycle Framework provides a complete PLE solution by introducing common con-
structs and concepts across the full systems and software lifecycle. The common PLE 
concepts and constructs are provided by way of tool integration and asset integration 
into the PLE Lifecycle Framework. 

4.1. Tool Integration 

The purpose of tool integrations into the PLE Lifecycle Framework is simply to make 
conventional engineering tools “PLE-aware”. This means making a tool aware and 
capable of working on sharable and configurable PLE assets that contain internal PLE 
variations rather than merely working on conventional assets for one-of-a-kind ap-
plications. 

The central concept in making any engineering tool PLE-aware is the variation point. 
Variation points are the encapsulated locales within an asset that can be instantiated in 
different ways by the Gears product configurator, based on feature selections in the 
feature profiles. For an engineering tool to be PLE-aware, it must be able to: 

• identify and display variation points 

• create and modify variation points 
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• aid the PLE framework’s product configurator in instantiating variation points dur-
ing product configuration 

• display the instantiated representation of a variation point, as well as all the super-
set of uninstantiated variability 

• aid the PLE framework with product line management operations such as semantic 
checks on variation points, impact analysis, statistics and queries 

Figure 3 illustrates the PLE Bridge API on the Gears PLE Lifecycle Framework. The 
API is used to create bridges to existing engineering tools, in order to make them 
PLE-aware, according to the capabilities outlined above. 

Specific characteristics of a tool and its associated assets determine the type of inte-
gration bridge that is required. When a tool’s assets have a text-based representation 
in the file system, the Gears framework can often provide all the variation point capa-
bilities, without the need for an explicit tool integration. 

On the other hand, when a tool’s assets are maintained in a proprietary internal repre-
sentation, a deeper two-way bridge integration is often required, where the tool is 
made PLE-aware and the framework is made tool-aware. For example, the IBM Ra-
tional DOORS® requirements management tool uses a database for its proprietary 
internal representation of requirements. A two-way DOORS/Gears Bridge was created 
as a dual plugin between DOORS and the Gears PLE Lifecycle Framework, to make 
them mutually aware so that operations and data can be exchanged to collaboratively 
perform PLE engineering operations in DOORS [8]. 

The integration bridges are independently installable options in the framework. When 
an organization transitions to the BigLever PLE approach, they identify preexisting 
bridges to match their existing toolset and install them into the Gears PLE framework, 
as illustrated in the example in Figure 3.  Commercial, open source, and proprietary 
tool vendors across the full engineering lifecycle have recognized the importance of 
the PLE Lifecycle Framework and are working with BigLever to provide bridge inte-
grations for their tools.  

Figure 3.  Tool Integrations with the Gears PLE Bridge API 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4.2. Asset Integration 

The purpose of asset integration into the Gears PLE Lifecycle Framework is to enable 
conventional one-of-a-kind assets to become shareable and configurable PLE assets. 
The key to asset integration is adding the variation point concept and constructs into 
the asset structure [6]: 

• identify which asset constructs can become variation points 

• define variation point encapsulations to contain the optional and alternative vari-
ants for the variation point, as well as the feature-based variation point logic to 
drive the variation point instantiation 

• define the representation for variation point instantiations 

To achieve the objective of common PLE concepts and constructs across all stages of 
the lifecycle, the variation point implementation in all assets must provide the capa-
bilities outlined in the three bullets above. 

For example, with file and text based source code assets, the constructs that can be-
come variation points are typically directories, files, text blocks, text patterns, and text 
tokens. Directories make good variation point encapsulations to hold file variants and 
variation point logic files. The variation point instantiations can simply be files and 
directories. 

In another asset integration example, variation points in a UML™ model could be any 
of the model elements. In the IBM Rational Rhapsody® integration – the Rhapsody/
Gears Bridge – UML “tags” within a model element are used to hold the variation 
point logic and the optional and alternative variants for the model element. The varia-
tion point instantiation for a model element is reflected in the executable code that 
Rhapsody generates off of a model element variation point as well as visual indicators 
as to which model elements are excluded in a particular model instantiation [7]. 

In the DOORS/Gears Bridge requirements integration into the framework, a require-
ment and its descendants can become a variation point. The instantiation logic for a 
variation point is contained in a DOORS attribute. For requirements alternatives in a 
variation point, child requirements are specially tagged as variants for the parent re-
quirement. The variation point instantiation is displayed in a separate database col-
umn [8]. 

These illustrate different kinds of variation points for different kinds of tool-supported 
assets, but their adherence to the PLE Lifecycle Framework means that in all cases: 

• exercising the variation points – that is, producing an instance of the asset for a 
product – is driven by a selection of features in the profile for that product 

• the logic to express the choice uses the same language 

• the variation mechanisms available are the same across all of the assets 

5. Complete and Consistent End-to-End PLE Lifecycle 

The uniformity of concepts and constructs provided by the PLE Lifecycle Framework 
allows traceability and processes to flow cleanly among different lifecycle stages, 
without the dissonance created by different techniques in different lifecycle stages. 

Figure 4 illustrates this by showing and example of the classic V-model for systems 
and software engineering.  For PLE-aware tools, each of the lifecycle phases (shown 
as colored parallelograms), is augmented by the addition of variation points (shown as 
gear symbols) to the assets native to that tool and phase.   

A Bill-of-Features in the top-center of the figure corresponds to the feature selections 
in the feature profile for a product. The name is meant to elicit the analogy to the Bill-
of-Materials, a term that is used in mechanical design to designate the listing of parts 
that comprise a product. By this analogy, the Bill-of-Features is the listing of PLE 
features that comprise a product. 
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The yellow arrows illustrate that all of the variation points in all of the assets across 
the full lifecycle are synchronously and consistently configured according to the sin-
gle consolidated collection of feature selections in the Bill-of-Features.  

 

Figure 4.  Complete and Consistent Systems and Software PLE V-Model 

5.1. Traceability 

There are three simple heuristics for defining and managing traceability among the 
assets in different stages of the lifecycle. 

• Traceability among the common parts of the assets is managed identical to the way 
it is managed with one-of-a-kind products. Common requirements trace to common 
design elements, which trace to common source code elements, and so forth. 

• Traceability among the variation points in the assets is managed similarly. Varia-
tion points in requirements trace to variation points in design elements, which in 
turn trace to variation points in source code, and so forth. 

• If there is a traceability relationship between a common asset in one stage and an 
optional variation point in another stage (or vice versa), it is most likely an error in 
the traceability relationship. This type of traceability consistency analysis can be 
automated by tools in the framework. 

Traceability with the PLE Lifecycle Framework is remarkably simple compared to the 
intractable complexity described earlier when trying to define traceability relation-
ships among disparate PLE point solutions in different lifecycle silos. 
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5.2. Process Flow 

The flow of engineering processes among different lifecycle stages closely mirrors 
traceability. For example, passing a new set of requirements to an architecture and 
design team leads to new design models, with traceability relationships between the 
requirements and design. If the intended traceability in the requirements is difficult to 
extract and express, then there will be dissonance in the process between the require-
ments and design stages in the lifecycle. 

Thus, the shared PLE concepts and constructs in the different lifecycle stages, plus the 
simplicity of traceability shown in the previous section translates to simplicity in the 
processes at the lifecycle boundaries.  

Furthermore, since the framework feature model and feature profiles are shared across 
all lifecycle stages, assets in all stages are constructed under the same PLE feature set. 
This makes it easier to understand assets and their variations in multiple stages when 
processes depend on it. 

6. Conclusions 

With the Gears PLE Lifecycle Framework providing a common set of PLE concepts 
and constructs at every stage in the systems and software engineering lifecycle, the 
engineering of assets for a product line can be defined, viewed and managed as a sin-
gle production system, rather than a collection of disparate silos for each of the lifecy-
cle stages. This single production system represents a complete PLE solution that is 
readily adopted by mainstream engineering organizations. 
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