
Contact Information:

info@biglever.com  

www.biglever.com  

512-426-2227  

The Systems and Software  

Product Line Engineering  

Lifecycle Framework

Mainstream forces are driving Systems and Software Product Line Engineering

(PLE) approaches to take a more holistic perspective that is deeply integrated

into the systems and software engineering lifecycle. PLE challenges will not be

solved at any one stage in the product engineering lifecycle, nor will they be

solved in independent and disparate silos in each of the different stages of the

lifecycle. This paper describes BigLever Software’s response to these forces – a

PLE Lifecycle Framework.

The motivation for this technology framework is to ease the integration of tools,

assets, and processes across the full systems and software engineering lifecy-

cle. The framework provides product line engineers with a common set of PLE

concepts and constructs for all of their tools and assets, at every stage of the

lifecycle, and to assure that product line engineering traceability and processes

flow cleanly from one stage of the lifecycle to another.  

1. Introduction

According to Geoffrey Moore’s classic hi-tech marketing book Crossing the Chasm,
widespread adoption of a new hi-tech offering requires more than just a great concept,
technique, technology, or product. The mainstream majority of users require a com-
plete solution. Although a small percentage of potential users – Innovators and Early
Adopters according to Moore – are willing to take on the task of extending new ideas
and technology into a complete and workable solution, the majority of users that
make up the mainstream – the Early Majority and Late Majority – are simply unwill-
ing or unable to dedicate the resources needed to innovate complete solutions out of
promising concepts, techniques, technologies, and tools [1].

These mainstream forces from the early majority and late majority contingents require
Systems and Software Product Line Engineering (PLE) approaches to provide holistic
solutions that are deeply integrated into the full engineering lifecycle. We describe
here BigLever Software’s response to these forces – the PLE Lifecycle Framework for
the full systems and software product line engineering lifecycle.

The PLE Lifecycle Framework is a key ingredient to a complete, out-of-the-box PLE
solution that enables easy adoption by mainstream organizations. It provides an inte-
gration framework for engineering tools, assets, and processes across the systems and
software engineering lifecycle. The PLE Lifecycle Framework offers engineers and
managers a common set of PLE concepts, constructs, and capabilities for all of their
existing tools and assets, at every stage of the lifecycle.

When used in conjunction with BigLever’s 3-Tiered PLE Methodology [2], the PLE
Lifecycle Framework offers a straightforward transition path from legacy approaches
to a complete PLE solution. The PLE Lifecycle Framework has enabled organizations
with some of the largest, most sophisticated, and complex safety-critical systems ever
built to adopt the PLE approach [5].

2. Importance of the PLE Lifecycle

A fundamental tenet of product line engineering is that product line variation must be
simultaneously managed along two dimensions, time and space [3]:

Copyright © 2020 BigLever Software, Inc. 1

The goal is to provide prod-

uct line engineers with a

common set of PLE concepts

and constructs for all of their

tools and assets, at every

stage of the lifecycle, and to

assure that product line engi-

neering traceability and pro-

cesses flow cleanly from one

stage of the lifecycle to an-

other.

• variation in time, to manage asset evolution, or multi-baseline management;

• variation in space, to manage diversity within assets and products in the product
line -- that is, multi-product management.

Practical experience with numerous commercial PLE deployments at BigLever Soft-
ware has illuminated an equally important third dimension that must be addressed to
provide a complete PLE solution for mainstream product line engineering organiza-
tions:

• variation in the lifecycle, to provide consistency and to manage traceability among
asset variations in different lifecycle stages (i.e., multi-phase management)

These three dimensions -- multi-product in the domain space, multi-phase across the
lifecycle, and multi-baseline in time -- are illustrated in Figure 1.  

Figure 1. The Three Dimensions of a Complete PLE Solution

The importance of the additional multi-phase lifecycle dimension for providing a
complete end-to-end solution can be attributed to the importance of:

• Engineering process management. Well defined engineering processes are common
in mainstream organizations, often due to large size but also to external contractual
or legal governance. As a result, the engineering lifecycle is usually explicitly de-
fined by these organizations, within each lifecycle stage and across the boundaries
between each of the stages.

• Systems and software engineering. Software – the primary focus in the early histo-
ry of product line engineering – is often engineered within the larger context of a
system. Embedded software in mechanical systems is an obvious example, though
other common examples include enterprise and web-based software designed in the
specific context of server, network, or specialty hardware and IT system architec-
tures. For systems in which software does not play a major role in the end product,
the engineering assets supporting those systems’ development and sustainment (for
example, requirements, or design models, or test cases) are represented or manipu-
lated with software or software tools. As a result, the engineering lifecycle in-

Copyright © 2020 BigLever Software, Inc. 2

cludes the combined systems and software perspective for requirements, architec-
tures, models, documentation, test plans, and so forth, rather than just a narrow
software-only product line perspective.

When transitioning to a PLE approach, a complete solution must retain the holistic
lifecycle focus and capabilities. That is, a complete solution must simultaneously
manage systems and software product line commonality and variability in all three
dimensions of time, space, and lifecycle.

2.1. The Need for a PLE Lifecycle

One of the key capabilities of a good engineering lifecycle solution is traceability [4].
For example, every requirement should be traceable to one or more design elements
that satisfy that requirement and each design element should be traceable back to one
or more requirements that it satisfies. Each design element should be traceable for-
ward to its implementation and vice versa. Each requirement should be traceable to
and from one or more test cases that validate whether or not the requirement is satis-
fied in the final product.

For the lifecycle of an individual product, traceability is represented as a static set of
relationships among the assets in the lifecycle (e.g., requirements, architecture, de-
sign, source code, test cases, documentation). Of course, as the software assets evolve
over time, the traceability relationships also evolve. In fact, traceability relationships
are intended to facilitate evolution by indicating which related artifacts need to
change whenever any traceable artifact is modified. Thus, traceability for a single
product applies to the multi-baseline and multi-phase dimensions of Figure 1.

When traceability is applied to a product line rather than an individual product, the
third dimension – multi-product – must now be accommodated as well. Similar to the
case of an individual product, traceability among the parts of assets that are common
to all products is represented as a static set of relationships. However, for the parts of
the assets the vary from product to product, the traceability relationships in and out of
these asset “variation points” also vary. This is where most PLE concepts, technology,
tools, and techniques fall short.

Imagine that a requirements engineering team has embraced a PLE requirements
management technique based on tagging requirements in a requirements database
with attributes that differentiate capability variations in requirements. Imagine that
the design team has adopted a UML tool and has embraced inheritance as the mecha-
nism for managing PLE design variations. The development team is using a FODA
feature model drawn in a graphical editor, plus #ifdefs, build flags, and configuration
management (CM) branches to manage PLE implementation variations. Finally, the
test team has adopted clone-and-own of test plan sections, stored in appropriately
named file system directories for each product to manage their PLE test plan varia-
tions.

Now imagine what would be needed to create a complete PLE lifecycle solution that
integrates into a larger business engineering model. How do the requirements data-
base attributes and tagged requirements relate and trace to the subtypes and super-
types in the design models? How do these attributes and supertypes relate and trace to
the #ifdef flags, CM branches, FODA features, and test case product-specific cloned
directories?

Without answers to these questions, it is not possible to define a lifecycle process that
flows cleanly from one stage of the lifecycle to another. Trying to translate between
the different representations and characterizations of capabilities, features and product
variations creates dissonance at the boundaries between stages in the lifecycle.

This example illustrates that a complete PLE solution cannot be built with concepts,
technology, tools, and techniques at any one stage of the lifecycle. Nor can it be built
with a combination of disparate point solutions at different stages.

Copyright © 2020 BigLever Software, Inc. 3

3. The PLE Lifecycle Framework

To meet the needs of engineering organizations for a complete systems and software
product line engineering solution, BigLever Software created the Gears PLE Lifecy-
cle Framework. This framework supports all three of the PLE solution dimensions
illustrated in Figure 1 – multi-baseline in time, multi-product in the domain, and mul-
ti-phase in the lifecycle. The motivation for this technology framework is to ease the
integration of engineering tools, assets, and processes across the full systems and
software engineering lifecycle.

The goal is to provide product line engineers with a common set of PLE concepts and
constructs for all of their tools and assets, at every stage of the lifecycle. Furthermore,
the goal is to apply these concepts and constructs uniformly, so that traceability and
engineering processes flow cleanly from one lifecycle stage to another – for systems
analysts, requirements engineers, architects, modelers, developers, build engineers,
document writers, configuration managers, test engineers, field engineers, project
managers, product marketers, and so forth.

The PLE Lifecycle Framework is an integration framework for engineering tools and
assets. It is narrowly focused on the PLE issues of feature-based variation manage-
ment in the product space, and asset variation management in the lifecycle phases.
This enables the third dimension (time) to be managed under the PLE methodology
with conventional change, configuration and baseline management.

The PLE Lifecycle Framework provides product line engineering organizations the
following [5][6]:

• A consolidated feature model to uniformly express product diversity, for assets in
any stage of the systems and software engineering lifecycle, including require-
ments, architecture, models, design, source code, test cases, and documentation.

• Standardized variation point constructs that can be uniformly applied to any engi-
neering tool and its associated assets in any stage of the systems and software en-
gineering lifecycle, including tools and assets for requirements management, mod-
el-driven development, mechanical design, electrical design, source code develop-
ment, test case development, configuration management, build automation, change
management, and document development.

• An automated product configurator that uniformly assembles and configures assets
from each stage of the engineering lifecycle to automatically produce any of the
engineering assets in a product line.

An example product line engineering environment based on BigLever’s Gears PLE
Lifecycle Framework is illustrated in Figure 2. Key elements of the framework are:

• Feature Catalog. The Feature Catalog contains all the feature options available for
all the products in that product line, and is used by individuals and teams across the
lifecycle, and across organizational functions.

• Bill-of-Features. The features chosen for each product are specified in the Bill-of-
Features for that product.

• Shared PLE Assets, such are requirements, design models, source code and test
cases. Shared PLE assets contain feature-based variation points that can be config-
ured in different ways to reflect the feature selections in a feature profile.

• Gears Product Configurator. The product configurator automatically configures
all of the shared PLE assets for a product instance, based on the feature selections
in a feature profile.

On the right half of the diagram shown in Figure 2 is the full set of product instances
that can be produced by the product configurator in the framework. There is a one-to-
one correspondence to the feature profiles and the product instances – each feature
profile is used by the product configurator to automatically configure the assets for
the corresponding product instance. Note that all the assets from the full engineering
lifecycle are produced for each of the products in the product line.

Copyright © 2020 BigLever Software, Inc. 4

The underlying PLE technology for the framework, such as the configurator, feature
profiles and variation points, is described in [5][6]. Similarly, the underlying PLE
methodology is described in [2].

The PLE Lifecycle Framework provides the critical lifecycle dimension needed for a
complete PLE solution.

4. Common PLE Constructs and Concepts Across the

Lifecycle

To overcome the problem of dissonant PLE concepts, technology, tools and tech-
niques imposing disparate PLE silos in the engineering lifecycle, BigLever’s PLE
Lifecycle Framework provides a complete PLE solution by introducing common con-
structs and concepts across the full systems and software lifecycle. The common PLE
concepts and constructs are provided by way of tool integration and asset integration
into the PLE Lifecycle Framework.

4.1. Tool Integration

The purpose of tool integrations into the PLE Lifecycle Framework is simply to make
conventional engineering tools “PLE-aware”. This means making a tool aware and
capable of working on sharable and configurable PLE assets that contain internal PLE
variations rather than merely working on conventional assets for one-of-a-kind ap-
plications.

The central concept in making any engineering tool PLE-aware is the variation point.
Variation points are the encapsulated locales within an asset that can be instantiated in
different ways by the Gears product configurator, based on feature selections in the
feature profiles. For an engineering tool to be PLE-aware, it must be able to:

• identify and display variation points

• create and modify variation points

Copyright © 2020 BigLever Software, Inc. 5

Figure 2. Product Line Engineering with the Gears PLE Lifecycle Framework

• aid the PLE framework’s product configurator in instantiating variation points dur-
ing product configuration

• display the instantiated representation of a variation point, as well as all the super-
set of uninstantiated variability

• aid the PLE framework with product line management operations such as semantic
checks on variation points, impact analysis, statistics and queries

Figure 3 illustrates the PLE Bridge API on the Gears PLE Lifecycle Framework. The
API is used to create bridges to existing engineering tools, in order to make them
PLE-aware, according to the capabilities outlined above.

Specific characteristics of a tool and its associated assets determine the type of inte-
gration bridge that is required. When a tool’s assets have a text-based representation
in the file system, the Gears framework can often provide all the variation point capa-
bilities, without the need for an explicit tool integration.

On the other hand, when a tool’s assets are maintained in a proprietary internal repre-
sentation, a deeper two-way bridge integration is often required, where the tool is
made PLE-aware and the framework is made tool-aware. For example, the IBM Ra-
tional DOORS® requirements management tool uses a database for its proprietary
internal representation of requirements. A two-way DOORS/Gears Bridge was created
as a dual plugin between DOORS and the Gears PLE Lifecycle Framework, to make
them mutually aware so that operations and data can be exchanged to collaboratively
perform PLE engineering operations in DOORS [8].

The integration bridges are independently installable options in the framework. When
an organization transitions to the BigLever PLE approach, they identify preexisting
bridges to match their existing toolset and install them into the Gears PLE framework,
as illustrated in the example in Figure 3. Commercial, open source, and proprietary
tool vendors across the full engineering lifecycle have recognized the importance of
the PLE Lifecycle Framework and are working with BigLever to provide bridge inte-
grations for their tools.  

Figure 3. Tool Integrations with the Gears PLE Bridge API 

Copyright © 2020 BigLever Software, Inc. 6

4.2. Asset Integration

The purpose of asset integration into the Gears PLE Lifecycle Framework is to enable
conventional one-of-a-kind assets to become shareable and configurable PLE assets.
The key to asset integration is adding the variation point concept and constructs into
the asset structure [6]:

• identify which asset constructs can become variation points

• define variation point encapsulations to contain the optional and alternative vari-
ants for the variation point, as well as the feature-based variation point logic to
drive the variation point instantiation

• define the representation for variation point instantiations

To achieve the objective of common PLE concepts and constructs across all stages of
the lifecycle, the variation point implementation in all assets must provide the capa-
bilities outlined in the three bullets above.

For example, with file and text based source code assets, the constructs that can be-
come variation points are typically directories, files, text blocks, text patterns, and text
tokens. Directories make good variation point encapsulations to hold file variants and
variation point logic files. The variation point instantiations can simply be files and
directories.

In another asset integration example, variation points in a UML™ model could be any
of the model elements. In the IBM Rational Rhapsody® integration – the Rhapsody/
Gears Bridge – UML “tags” within a model element are used to hold the variation
point logic and the optional and alternative variants for the model element. The varia-
tion point instantiation for a model element is reflected in the executable code that
Rhapsody generates off of a model element variation point as well as visual indicators
as to which model elements are excluded in a particular model instantiation [7].

In the DOORS/Gears Bridge requirements integration into the framework, a require-
ment and its descendants can become a variation point. The instantiation logic for a
variation point is contained in a DOORS attribute. For requirements alternatives in a
variation point, child requirements are specially tagged as variants for the parent re-
quirement. The variation point instantiation is displayed in a separate database col-
umn [8].

These illustrate different kinds of variation points for different kinds of tool-supported
assets, but their adherence to the PLE Lifecycle Framework means that in all cases:

• exercising the variation points – that is, producing an instance of the asset for a
product – is driven by a selection of features in the profile for that product

• the logic to express the choice uses the same language

• the variation mechanisms available are the same across all of the assets

5. Complete and Consistent End-to-End PLE Lifecycle

The uniformity of concepts and constructs provided by the PLE Lifecycle Framework
allows traceability and processes to flow cleanly among different lifecycle stages,
without the dissonance created by different techniques in different lifecycle stages.

Figure 4 illustrates this by showing and example of the classic V-model for systems
and software engineering. For PLE-aware tools, each of the lifecycle phases (shown
as colored parallelograms), is augmented by the addition of variation points (shown as
gear symbols) to the assets native to that tool and phase.

A Bill-of-Features in the top-center of the figure corresponds to the feature selections
in the feature profile for a product. The name is meant to elicit the analogy to the Bill-
of-Materials, a term that is used in mechanical design to designate the listing of parts
that comprise a product. By this analogy, the Bill-of-Features is the listing of PLE
features that comprise a product.

Copyright © 2020 BigLever Software, Inc. 7

The yellow arrows illustrate that all of the variation points in all of the assets across
the full lifecycle are synchronously and consistently configured according to the sin-
gle consolidated collection of feature selections in the Bill-of-Features.  

Figure 4. Complete and Consistent Systems and Software PLE V-Model 

5.1. Traceability

There are three simple heuristics for defining and managing traceability among the
assets in different stages of the lifecycle.

• Traceability among the common parts of the assets is managed identical to the way
it is managed with one-of-a-kind products. Common requirements trace to common
design elements, which trace to common source code elements, and so forth.

• Traceability among the variation points in the assets is managed similarly. Varia-
tion points in requirements trace to variation points in design elements, which in
turn trace to variation points in source code, and so forth.

• If there is a traceability relationship between a common asset in one stage and an
optional variation point in another stage (or vice versa), it is most likely an error in
the traceability relationship. This type of traceability consistency analysis can be
automated by tools in the framework.

Traceability with the PLE Lifecycle Framework is remarkably simple compared to the
intractable complexity described earlier when trying to define traceability relation-
ships among disparate PLE point solutions in different lifecycle silos.

Copyright © 2020 BigLever Software, Inc. 8

5.2. Process Flow

The flow of engineering processes among different lifecycle stages closely mirrors
traceability. For example, passing a new set of requirements to an architecture and
design team leads to new design models, with traceability relationships between the
requirements and design. If the intended traceability in the requirements is difficult to
extract and express, then there will be dissonance in the process between the require-
ments and design stages in the lifecycle.

Thus, the shared PLE concepts and constructs in the different lifecycle stages, plus the
simplicity of traceability shown in the previous section translates to simplicity in the
processes at the lifecycle boundaries.

Furthermore, since the framework feature model and feature profiles are shared across
all lifecycle stages, assets in all stages are constructed under the same PLE feature set.
This makes it easier to understand assets and their variations in multiple stages when
processes depend on it.

6. Conclusions

With the Gears PLE Lifecycle Framework providing a common set of PLE concepts
and constructs at every stage in the systems and software engineering lifecycle, the
engineering of assets for a product line can be defined, viewed and managed as a sin-
gle production system, rather than a collection of disparate silos for each of the lifecy-
cle stages. This single production system represents a complete PLE solution that is
readily adopted by mainstream engineering organizations.

References

1. Geoffrey A. Moore, Crossing the Chasm. HarperCollins Publisher, New York, NY, 1991.

2. The Pragmatic 3-Tiered Product Line Engineering Methodology. BigLever Software tech-
nical report #200709261r3, January 2013.

3. Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns, Addison-Wes-
ley, 2002.

4. Proceedings of the 3rd international workshop on Traceability in emerging forms of soft-
ware engineering, ACM, 2005, Long Beach, California November, 2005.

5. Flores, R., Krueger, C., Clements, P. “Mega-Scale Product Line Engineering at General
Motors,” Proceedings of the 2012 Software Product Line Conference (SPLC), Salvador
Brazil, August 2012.

6. Krueger, C; Clements, P. “Systems and Software Product Line Engineering,” Encyclopedia
of Software Engineering. Taylor & Francis Online, 2013.

7. Krueger, C; Bakal, M. Systems and software product line engineering with SysML, UML
and the IBM Rational Rhapsody BigLever Gears Bridge. IBM Rational technical report,
July 2007.

8. Krueger, C; Jackson, K. Requirements Engineering for Systems and Software Product Lines.
IBM Rational technical report, January 2009.

Copyright © 2020 BigLever Software, Inc. 9

