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ABSTRACT
Early generation Software Product Line (SPL) engineering 
has  evolved into Systems and Software Product  Line 
Engineering (PLE) approaches that extend well beyond the 
original focus on source code, to a more holistic perspective 
of the engineering  lifecycle. PLE tools and methods in 
commercial practice today support variation management in 
requirements, architecture, design models, source code, 
documentation, configuration data, test cases and more. One 
of the last lifecycle holdouts from PLE has been mechanical 
engineering, or Product Lifecycle Management (PLM).  The 
engineering complexity  of mechanical product families with 
embedded software has increased to a threshold where it is 
intractable for mechanical and software product line 
engineering to remain disjoint. This paper explores the 
convergence of mechanical, systems and software product 
line engineering and why it has been  slow to emerge. The 
reasons are based both on conceptual misalignment among 
the traditionally distinct  disciplines, as well  the differences 
between the physics of mechanical and software systems. 
The Aras Innovator / BigLever Gears  Bridge, an example 
PLM and PLE integration, is used to illustrate key concepts.

Categories and Subject Descriptors
D.2.2 [Design tools and techniques]: product line 
engineering, mechanical  product lines, product lifecycle 
management.

General Terms
Design, Economics, Management, Measurement, Theory.

Keywords
Mechanical Product Line Engineering, Product Lifecycle 
Management, Bill of Features, Bill of Materials.

1. Introduction
Early generation Software Product Line (SPL) engineering 
has evolved into second generation Product Line Engineering 
(PLE) tools and methods  that extend well  beyond the original 
focus on source code only, into a more holistic perspective of 
the end-to-end engineering lifecycle[1]. There are PLE tools 
and methods in  commercial production use today that support 
consolidated variation management across requirements, 
architecture, design models, source code, documentation, 
configuration data, test cases and more[2][3].
One of the last lifecycle holdouts in PLE has been 
mechanical engineering, which is commercially known as 
Mechanical Design Automation (MDA). MDA is  often  part 
of full lifecycle support for Product Lifecycle Management 
(PLM). When we refer to PLM in this paper, we are referring 
specifically to the MDA capabilities within PLM. 
The increasing engineering complexity for product families 
of mechanical  systems with embedded software is finally 
reaching a threshold where it  is  intractable for mechanical 
and software product  line engineering to remain disjoint. 
This paper explores the convergence of mechanical  and 
software product line engineering and why it  has been 
difficult and slow to  emerge.  The reasons  are based both on 
conceptual misalignment among the traditionally distinct 
disciplines, as well the differences between the physics of 
mechanical and software systems.
We illustrate the concepts  of an integrated PLM and PLE 
approach with the integration  of a commercial  PLM tool, 
Aras Innovator, into the BigLever Gears PLE lifecycle 
framework.  For mechanical engineers, this integration 
results in a paradigm shift in the way of thinking about 
engineering a family of hybrid mechanical, electrical and 
software systems and products. Rather than use a Bill-of-
Materials (BoM) to determine the Features that emerge in a 
system, start with a Bill-of-Features to help determine the 
Materials needed in a system, where materials in this case 
includes assets  from across the mechanical, systems and 
software engineering lifecycle — requirements, architecture, 
design models, software, mechanical  BoM, electrical, tests, 
documentation, and more.
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2. From Software Product Lines to 
Mechanical Product Line Engineering

To help set the context for this paper, the evolution of the 
Product Line Engineering field can be viewed according to 
five evolving and converging engineering disciplines.

• Product Lifecycle Management (PLM) for mechanical-
centric engineering.

• Software Product Line Engineering (SPL).
• Second generation Systems and Software Product Line 

Engineering (2GPLE) for software-centric Application 
Lifecycle Management (ALM).

• Mechanical, Systems and Software Product  Line 
Engineering (PLE). The convergence of ALM, PLM and 
2GPLE.

• Product Line Engineering and Operations (PLE&O), 
which extends PLE beyond the engineering lifecycle into 
the business operations before and after engineering.

The genesis of the product line field  was in Software Product 
Line Engineering, which itself emerged from studies in 
reusing product-scale software architectures and designs[4]
[5][6]. The primary focus here was on software and the 
source code implementation phase of the engineering 
lifecycle.
SPL evolved into 2GPLE, where the assets  from across the 
broader software-centric engineering lifecycle are also 
managed for product families[1].  The software-centric 
systems engineering lifecycle is sometimes referred to as the 
Application Lifecycle Management (ALM). 2GPLE 
approaches are feature-based, where a PLE feature model 
serves as the single source of feature truth  for all assets 
across the lifecycle[3].
The focus of this  paper is on  the convergence of 2GPLE and 
PLM. The software-centric ALM perspective of 2GPLE is 
extended to incorporate PLM. This provides the holistic 
discipline of mechanical, systems and software PLE.
The final  discipline in the evolution embraces the pre- and 
post-engineering lifecycle phases – the extended lifecycle 
that include business operations such as supply chain, 
manufacturing, sales, delivery, and product  maintenance. 
This is addressed in the Future Work section.

3. Impediments to Mechanical Product 
Line Engineering

Product Lifecycle Management for mechanical products  is 
one of the last engineering disciplines to be incorporated into 
the current generation feature-based systems and software 
PLE approach. As part of our work to address this gap, we 
identified several impediments  that explain why PLM has 
been a challenging integration with PLE.
On one hand, it is certainly the case that feature-based variant 
management is  compatible with mechanical  engineering. An 
optional or varying feature on a mechanical system with 
embedded software may crosscut the entire engineering 
lifecycle, resulting in optional or alternative mechanical parts 
that apply to some members of the product family and not 
others. At first glance it would appear that adding PLM to 
PLE might be straightforward and very similar to the way 

that other lifecycle disciplines from ALM, such a 
requirements, system design models, and tests were natural 
extensions to in feature-based PLE paradigm. 
However, there are characteristics of PLM and mechanical 
engineering that are substantially different from the other 
systems and software centric disciplines, resulting in unique 
challenges and the need for unique solutions. These 
differences come from conceptual  misalignment between the 
traditionally distinct engineering disciplines of software-
centric ALM and mechanical-centric PLM, plus  differences 
in  the real  world physics of mechanical and software 
artifacts. These differences, described in  the following 
subsections, have been impediments to integrating PLM into 
PLE and have thereby slowed the efforts to achieve holistic 
end-to-end lifecycle PLE for mechanical, systems and 
software engineering.

3.1. Differences in Product Realization and 
Deployment for ALM and PLM

PLE for ALM assets  that are realized as bits and bytes (soft 
assets) is different from PLE for PLM assets that are realized 
as physical, mechanical parts (mechanical assets).

• The cost, time and effort required to modify, reproduce 
and retest  soft assets is significantly less than for 
mechanical assets. With PLE it  is possible to 
automatically regenerate and retest 100 different ALM 
product variants every night, whereas  setting up  and 
exercising a mechanical testbed for a single product 
variant can take days and significant expense.

• The cost, time and effort  to produce, distribute and install 
many exact copies of software assets  is negligible 
compared to manufacturing and shipping many exact 
copies of mechanical assets.

• When soft assets are updated and redeployed, it’s often 
easiest and least expensive to replace everything rather 
than attempting minimal updates to  only what has 
changed. Examples include replacing an entire electronic 
document, compiled application software, requirements 
modules in a database, a collection of design models, and 
zip files containing a collection of test cases. However, 
updates to mechanical assets  requires care and 
consideration to minimize the total cost and risk of 
replacing only  the necessary parts  or assemblies. It makes 
complete sense to replace an entire software application 
when there is a user interface bug, but  it  never makes 
sense to  replace an entire automobile when there is a 
defective switch on the dashboard.

• There are limited physical constraints  for soft assets  – for 
example memory space to  run an executable. However, 
one of the core capabilities of MDA in PLM is managing 
a large number of different types of physical  constraints 
for mechanical assets. Physical parts can’t overlap in 
space. The space that must  be maintained  between heat 
generating parts and heat sensitive parts  is influenced by 
airflow characteristics provided by the larger assembly. 
Electromagnetic interference (EMI) constrains  the 
placement and selection of part and shielding variants.

The implications of all of this for PLE is that the feature-
based, automated 2GPLE configuration tools and methods 
that are optimized for ALM soft assets need to be augmented 



to  account for the physics and economics of variant part 
selection in  mechanical  assets. For ALM, feature-based 
variant and selection criteria can be generally grouped into 
functional and non-functional characteristics. For example:

• Passive entry  for door locking and unlocking on an 
automobile is a functional  variant. It is customer-facing 
with  externally visible behavioral  differences if the 
passive entry option is present or not present on a vehicle.

• A low-noise cooling fan for an automobile engine heat 
exchanger is a non-functional  variant. The customer is not 
directly aware of this option on a vehicle, but engineers 
might  select a more expensive low-noise cooling fan  on 
more expensive vehicles  in order to achieve lower overall 
noise levels in the passenger compartment.

PLM requires an additional type of PLE selection criteria to 
account for decisions based on the physics and economics of 
manufacturing and delivering mechanical parts. We refer to 
the selection  criteria in this group as operational 
characteristics. For example, the same or compatible part in  a 
mechanical BoM assembly might be sourced from multiple 
suppliers to lower risk  and increase competition. The final 
selection between the part variants from multiple suppliers 
might then be influenced by:

• negotiated supplier volume agreements
• shipping  cost between a supplier and a particular 

manufacturing plant
• alignment of the time when parts are needed and the 

time when a supplier can deliver the parts
• load balancing the percentage of parts from multiple 

suppliers to  accommodate the output capacity of each 
supplier

3.2. D i f f erences in Vers ion and Var iant 
Management for ALM and PLM

Like all engineering lifecycle disciplines, the idea of creating 
a product family is not a new to PLM. Like all engineering 
lifecycle disciplines, PLM BoM tools offer mechanisms to 
manage part variants in the BoM in order to support product 
family variants.  The same is true for managing temporal 
versions of PLM BoM parts and assemblies as  they are 
modified over time.
However, the constructs and techniques used for managing 
versions and variants in PLM versus ALM are conceptually 
different, making it difficult for experts in one domain to 
effectively communicate about these concepts with experts  in 
the other domain.
ALM techniques  for variant and version management tend to 
be based on source code configuration management 
constructs and techniques such as file versions, concurrent 
development branches, and labeled baselines. Users typically 
create and work in a workspace that contains only one 
version and variant of each file or object, viewing one 
product at a point in time.
PLM techniques for variant and version management tend to 
be based on database constructs and techniques  such as 
effectivity (i.e., specifying ranges of time and/or products for 
which a particular part instance  is valid). Users  typically 
work in an unfiltered database view displays all of the 

versions and variants side-by-side or in filtered views for a 
particular product or range of products.
Aligning  ALM versions, branches and baselines, which tend 
to  be statically enumerated content, with PLM effectivity, 
which tends to be dynamically filtered content, is not 
straightforward because there are no clear isomorphisms. 
Archiving copies of assets from each lifecycle discipline is a 
typical technique for managing the versions and variants that 
were delivered in a product instance.
Another implication on PLE of the differences  between ALM 
and PLM version  and variant  management is  that  mechanical 
PLM product content continues to evolve after a product  is 
deployed, whereas ALM product content remains fixed. 
Automobiles undergo service and maintenance over time, 
possibly  resulting in individual parts being replaced by new 
and/or improved parts. Airplanes require certain  parts  to be 
serviced or replaced after a declared  number of hours in 
service. A particular replacement part may be incompatible 
with  a replacement part in a different assembly, so it is 
essential to keep records of the as-maintained state for safety-
critical products, all the way down to the serial numbers of 
each assembly that might be impacted by a safety recall.

4. Solutions for Mechanical Product Line 
Engineering

We have addressed each of the PLM-PLE impediments and 
gaps identified above and created a commercially available 
solution, based on the BigLever Gears PLE Lifecycle 
Framework and the Aras Innovator PLM BoM tool[7][8].
This section describes the general approach used to address 
each of the impediments.  In  the next section we describe the 
specific implementation details in the Innovator/Gears Bridge 
solution.

4.1. PLE Configurators versus PLM Configurators 
for Variant Management

In Section 3.1, the primary gap identified for PLM with PLE 
was the need for operational selection criteria when doing 
PLE variant part selection in PLM.
Two approaches were identified and considered:

• Add operational “features” in  a PLE feature model  to 
drive part  selection with the feature-based PLE 
configurator. For example, if there are two suppliers for a 
particular part, SupplierA and SupplierB, define a 
mutually exclusive feature enumeration that would allow 
the portfolio  owner to  select  either SupplierA or 
SupplierB in each product Bill-of-Features.

• Use an existing MDA variant management and constraint 
solving configurator in PLM for operational  part variant 
selection and use the feature-based PLE configurator to 
pre-filter with the functional and non-functional selection 
criteria.

Using two configurators in the latter approach initially seems 
unwieldy, but separation of concerns argues strongly in favor. 

• First, applying the Bill-of-Features  concern of PLE, the 
BoM for a product family is filtered by the PLE 
configurator to remove parts that don’t satisfy the 
functional and non-function selection criteria. The result 



is  a partially filtered BoM with different “buckets” that 
contain variant  part alternatives. The mutually exclusive 
parts within  any bucket  differ by operational selection 
criteria and the partially filtered BoM is still  unsolved for 
physical constraints.

• Next, applying  the Bill-of-Materials concern of PLM, the 
feature-filtered BoM is solved by the MDA configurator 
to  fully resolve the part selections based on the desired set 
of operational characteristics and physical constraints.

This separation of concerns  has several advantages. The PLE 
Bill-of-Features concern assures that a single source of 
feature truth will consistently apply variation across the full 
mechanical, system and software engineering lifecycle. The 
PLM Bill-of-Materials concern assures that non-feature-
based operational concerns do not cross into the PLE domain 
and it  leverages the sophisticated physical constraint solvers 
that are one of the hallmarks of advanced PLM MDA tools.

4.2. Temporal Baseline Management
One of the three dimensions of the 2GPLE approach is the 
temporal management dimension, where inter-asset baselines 
are managed across the different  tools, assets and phases in 
the engineering lifecycle[1][3]. We have successfully applied 
temporal baseline management with collections of many 
different ALM tools. Fortunately, temporal effectivity in 
PLM databases  meshes cleanly into the cross lifecycle 
baseline management of 2GPLE. Rather than using a static 
ALM baseline label, PLM joins a cross lifecycle temporal 
baseline using a dynamic effectivity expression that  matches 
the point in time for the baseline.

5. The Aras Innovator / BigLever Gears 
Bridge:  PLM meets PLE

The practical realization and validation of the work in this 
paper is the Aras Innovator/BigLever Gears Bridge, which is 
an integration of the Aras  Innovator PLM BoM tool into the 
BigLever Gears PLE Lifecycle Framework. This makes 
Innovator a first class  member of the BigLever PLE 
Ecosystem. It is currently being deployed on the US Army 
Consolidated Product Line Management (CPM) Live 
Training Transformation program, an SPL Hall of Fame 
inductee[9].
The Innovator/Gears Bridge enables Mechanical PLE, 
providing a paradigm shift for engineers creating a hybrid 
mechanical, electrical and software product family. Rather 
than use a Bill-of-Materials to determine the features that 
emerge in system, start with a Bill-of-Features to help 
determine the materials needed in a system, where materials 
in  this  case includes all of the soft  assets and mechanical 
assets across the lifecycle.
The BigLever Gears PLE Lifecycle Framework embodies the 
2GPLE paradigm, where all of the bridge integrations from 
across the full engineering lifecycle, including Innovator/
Gears, use the same single source of truth about  the feature 
model, bill-of-features, and production line architecture, as 
well as  share the same feature-based product configurator, 
variation point  logic editors, PLE analysis tools, and more. 
The Innovator/Gear Bridge is built on the SDK, APIs and 
style guide from the Gears PLE Lifecycle Framework. As a 

result it has the same capabilities and look-and-feel as  all  of 
the other bridge integrations in the Gears PLE ecosystem.
Figure 1 shows an example screenshot from the Aras 
Innovator BoM tool  that is extended with the Innovator/
Gears Bridge. The bridge makes the Innovator BoM tool 
product line aware:

• PLE variation points are supported  on parts and 
assemblies in the BoM

• A Bill-of-Features can be applied to the BoM superset by 
the PLE configurator to instantiate product specific BoM 
subsets

• PLE variation point editors and analysis operations are 
available in the Innovator toolbar

Figure 1 shows the superset BoM structure for an automobile 
remote control key fob. The BoM hierarchy is shown in the 
left column. A BoM superset contains all of the common 
parts that are shared across all family instances and the 
variation point  parts  that  are either optional parts or mutually 
exclusive variants of a part. 
The two parts at the bottom, KF-1370 Case Screws and 
KF-1380 Brand Badge, are common parts, indicated by the 
standard Aras part  icon on the left of each BoM row. 
KF-1200 Key is an example of an optional variation point, 
indicated by the gray Gears  icon badge overlaid on the upper-
left of the Aras  part  icon. KF-1300 Case Back is a variation 
point with two mutually exclusive variants, KF-1301 Case 
Back for Key and KF-1302 Case Back No Key, indicated by 
the variant  ‘V’  icon badges overlaid on the upper-left of the 
Aras part icons.
When a Bill-of-Features is applied to the BoM superset  view 
by  the Gears PLE configurator, variation points are visually 
marked to indicate which optional parts were included and 
excluded, as well as which mutually exclusive part variants 
were selected. A colorized view indicates the product-specific 
BoM subset that corresponds  to the Bill-of-Features that was 
applied by the Gears configurator. As illustrated in Figure 1, 
optional parts  will  either have a red slash to indicate 
exclusion (e.g., KF-1100 Battery Assembly) or a yellow 
highlight to indicate inclusion (e.g., KF-1200 Key). The 
selected member from a set of mutually exclusive variants is 
also highlighted in  yellow (e.g., KF-1301 Case Back for 
Key).
Of course, all common parts are always included in a 
product-specific subset BoM.
The variation point logic that determines  the inclusion and 
exclusion of a variation  point part is shown in the Gears 
Logic column of the BoM. The logic is edited  with the Gears 
Logic expression editor that is available from the Aras  tool 
bar (the pencil icon). The logic editor provides context 
sensitive help in constructing the relational expressions, 
based on the available features  in the feature model. The 
variation point  logic expression for KF-1200 Key says that 
this  part should be included in the key fob BoM when the 
vehicle has an  external KeyCylinder feature selected as one 
of the available RequestSource choices for electric door 
locking and unlocking.



6. Related Work
The idea of engineering a product family for mechanical 
systems is a core part of MDA and PLM[10]. PLM refers to 
this  as option and variant management. Much like the variant 
management techniques in ALM tools and disciplines, these 
tend to focus on low level Bill-of-Materials abstractions and 
the interrelationships among the parts. PLM with PLE 
provides a higher level of abstraction in the Bill-of-Features, 
where product content can be defined with a part  independent 
Bill-of-Features and then a BoM can be fully or partially 
derived from the Bill-of-Features.

7. Future Work
An unanticipated outcome of the integration of PLM and 
PLE is how the pre- and post-engineering business 
operations phases of the PLM lifecycle — for example, 
por t fo l io p lann ing , supp ly cha in management , 
manufacturing, sales, and product service — become natural 
candidate extensions for feature-based PLE. Each of these 
business operations require and implement  their own 
approach to product variant management techniques. 
Leveraging PLE feature models as the single source of 
feature truth for both engineering and business operations 
offers intriguing value and we are currently implementing 
proof-of-concepts at some of our PLE customers. We refer to 
this  extension to PLE as Product Line Engineering and 
Operations (PLE&O). We see this as  the next important  step 
in the evolution of the product line field.
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Figure 1.  Innovator BoM with Innovator/Gears Bridge


