
27th Annual INCOSE International Symposium (IS 2017)
Adelaide, Australia, July 15-20, 2017

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	Arms	
Regulations	or	the	U.S.	Export	Administration	Regulations.	

Model Based Engineering and
Product Line Engineering:

Combining Two Powerful Approaches at Raytheon

Dr. Bobbi Young
Raytheon Company

bobbi.young@raytheon.com

Dr. Paul Clements
BigLever Software
clements@biglever.com

Copyright © 2017 by Raytheon Company and BigLever Software. Published and used by INCOSE with permission.

Abstract. Model based engineering (MBE) refers to a systems engineering approach that
employs models as an integral part of a system’s engineering stream, providing a formality
and semantic rigor that lends itself to analysis and prediction, thus enabling earlier detection
of problems. Product line engineering (PLE) is a way to engineer a portfolio of related
products in an efficient manner, taking full advantage of the products’ similarities while
respecting and managing their differences. Raytheon, one of the world’s largest defense
contractors, is applying PLE and MBE together and combining the benefits of each. This
paper will show how Raytheon is using the two methodologies to support each other, and the
lessons it is learning as it does so.

Introduction
Model based engineering (MBE) refers to a systems engineering approach that employs
models as an integral part of a system’s engineering stream. Models typically bridge the gap
between engineering activities, and provide a formality and semantic rigor that lends itself to
analysis and prediction, thus enabling earlier detection of problems. The formality can also
lend itself to automation that can transform a model into another formal representation of the
system, typically, one that is “closer” to the final implementation or realization. This
automation can reduce the time, effort, and errors that are associated with the manual
translation that would otherwise be required.

Systems and software product line engineering, or “product line engineering (PLE)” for short,
is a way to engineer a portfolio of related products in an efficient manner, taking full
advantage of the products’ similarities while respecting and managing their differences.
Considering a portfolio as a single entity to be managed, as opposed to a multitude of
separate cloned products to be managed, brings enormous efficiencies in production and
maintenance; these efficiencies are delivering order-of-magnitude improvements in
engineering cost, time to market, staff productivity, product line scalability, and quality [10].

What happens when an organization tries to apply both of these groundbreaking,
organization- changing methodologies at the same time? Can they work together at all? This
paper conveys the experience of Raytheon, one of the world’s largest defense contractors, as
it is seeking to apply PLE and MBE together.

What Is Product Line Engineering?
Product line engineering (PLE) is a way to engineer a portfolio of related products in an
efficient manner, taking full advantage of the products’ similarities while respecting and

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

managing their differences. By “engineer,” we mean all of the activities involved in
planning, producing, delivering, and deploying, sustaining, and retiring products.

Born in the 1980s in the software field, but now having grown well beyond those early roots,
PLE offers large savings observed from engineering the whole family rather than separately
engineering each member. Numerous case studies [1][5][6][11][15][16] show that exploiting
the commonality throughout the products’ total life cycles can return substantial
improvements in time to market, cost, portfolio scalability, engineer productivity, and
product quality [14]; no other engineering paradigm shift has, to our knowledge, brought
about results that rival these.

Modern PLE is based on the concept of features that describe products and relies on
automated configuration tools (configurators) to instantiate shared assets (engineering
artifacts) in order to support specific products.

PLE as a factory
An analogy with factory-based manufacturing serves to illuminate the important concepts.
Manufacturers have long used engineering techniques to create a product line of similar
products using a common factory that assembles and configures parts to produce the varying
products in the product line. For example, automotive manufacturers can create thousands of
unique variations of one car model using a single pool of parts carefully designed to be
configurable and factories specifically designed to configure and assemble those parts.

In PLE, the configurator is the factory’s automation component; the “parts” are the assets in
the factory’s supply chain. A statement of the properties desired in the end product tells the
configurator how to configure the assets.

Figure 1 illustrates. This factory’s supply chain is at the left, in the form of shared assets that
are configurable because they include variation points that are expressed in terms of the
features [9] available in each of the products. A product specification at the top tells the
configurator how to configure the assets coming in from the left. The resulting products,
assembled from the configured assets, emerge on the right. This enables the rapid production
of any variant of any of the assets for any of the products in the portfolio. Once this
production line capability is established, products are instantiated – derived from the shared
assets – rather than manually created.

The products in the portfolio are described by the properties they have in common with each
other and the variations that set them apart. The products can comprise any combination of
software, systems in which software runs, or non-software systems that have
software-representable artifacts (such as requirements, engineering models, or development
plans) associated with the engineering process that produces them.
In this context “product” means not only the primary entity being built and delivered, but also
all of the artifacts that are produced along with it. Some of these support the engineering
process (such as requirements, project plans, design modes, and test cases), while others are
delivered alongside the thing being built (such as user manuals, shipping labels, and parts
lists). These artifacts are the product line’s assets.

Assets can be whatever artifacts are representable digitally and either constitute part of a
product or support the engineering process to create a product. Four kinds of shared assets
are shown in Figure 1, but those are just examples. Shared assets can include, but are not
limited to, requirements, design specifications, design models, source code, build files, test
plans and test cases, user documentation, repair manuals and installation guides, project

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

budgets, schedules, and work plans, product calibration and configuration files, data models,
parts lists, and more. Assets in PLE are engineered to be shared across the product line.

In this paper we will focus on models and designs as the shared assets of paramount interest,
as those lie at the intersection of MBE with PLE.	

Figure 1: PLE as a factory.

PLE contrasted with product-centric development
PLE stands in contrast to traditional product-centric development, in which each individual
product is developed and evolved independently from other products, or (at best) starts out as
a cloned copy of a similar product that is then changed to suit the new product’s specific
needs. Product-centric development takes very little advantage of the commonalities among
products in a portfolio after the initial clone operation. In particular, it derives very little
benefit from commonality in a product’s sustainment or maintenance phase, where data show
most products consume up to 90% of their project resources.

Figure 2 shows a production shop in which N products are developed and maintained. In this
stylized view, each product comprises requirements, design models, source code, and test
cases. Each engineer in this shop works primarily on a single product. When a new product
is launched, its project copies the most similar assets it can find, and starts adapting them to
meet the new product’s needs.

Coordination among projects, if there is any at all, is ad hoc and de-centralized, meaning that,
each of the N product teams should really confer with each of the other N-1 product teams.
These communication paths are shown in red in Figure 2. This communication obligation
imposes an overhead that grows as the square of the number of products. This complexity
will quickly overwhelm any engineering staff; in order to get their products out the door on
time and on budget, each product team will focus more on their product silo and less on
taking advantage of the commonalities and interdependencies among the other products. The

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

result is divergent product silos, low degrees of sharing, and high duplication of effort across
the product silos to fix the same defect multiple times in multiple products, or to
independently implement the same enhancements in different ways in different products.

Figure 2: Product-centric development yields O (N2) complexity

Under the PLE approach, all development takes place in the factory and not in project silos.
This assures the maximum amount of cross-project sharing on an ongoing basis.
Coordination happens between products and the factory, which for a portfolio of N products
is an O (N), as opposed to an O (N2), proposition.

Model Based Engineering
Model based engineering is “an approach to engineering that uses models as an integral part
of the technical baseline that includes the requirements, analysis, design, implementation, and
verification of a capability, system, and/or product throughout the acquisition life cycle”
[Final Report, Model-Based Engineering Subcommittee, NDIA, Feb. 2011].

A model, in turn, is “a physical, mathematical, or otherwise logical representation of a
system, unity, phenomenon, or process” [DoD 5000.59-M 1998].

Model based engineering is held in contrast to approaches in which documents, typically in
prose, serve as the basis for the information exchange among stakeholders in a systems
engineering process. An example is the hand-off of a design document from designers to
implementers or manufacturers.

Models, because of their physical or mathematical formulation, should be less ambiguous by
nature, and therefore more amenable to high-confidence analysis, thus reducing errors and
re-work in the systems engineering process. Some models are carry a precise enough
semantics to enable automation to translate them into engineering artifacts downstream in the
engineering flow – code generation, for example, in the case of models that represent designs
for software, or manufacturing prototypes in the case of models that represent physical
entities. The formality of the models (coupled with confidence in the automated translation)
allows us to have confidence that the downstream information is consistent with or carries out
the directives of the upstream model, and is therefore valid and acceptable.

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

MBE and PLE at Raytheon

Our Example: Integrated Air and Missile Defense (IAMD)
MBE and PLE are both in use separately, to varying degrees, throughout Raytheon. To
maintain confidentiality we will illustrate how the two paradigms can work together by
focusing on a particular (fictitious but realistic) example from the IAMD domain: a system
for integrated air and missile defense called GloboShield. GloboShield’s mission is to
provide a fully integrated capability to protect a theater from air and missile attack by
detecting, tracking, identifying, and destroying airborne threats. Such a system includes
sensors, displays, planning functions, threat evaluation, health and status monitoring,
communication with other friendly command and control systems for information exchange,
and more.

Figure 3 is a sketch of a system architecture for GloboShield, identifying its major
subsystems along with some explication about each. (Figure 3 does not tell the whole
architectural story, of course. It does not show, for example, behaviors of or execution-time
relationships among the subsystems; other architectural views do that. For the purposes of
our discussion, we will let Figure 3 stand in for the entire range of useful architecture
documentation.)

Figure 3: GloboShield Master Architecture Identifying Architectural Components
GloboShield is not a single product, but a product line. Customers can order GloboShield in
different configurations, and with different levels of capability. For example, each product
has different sensor and weapon systems, as well as different organizations for managing air
and missile defense.

In addition, GloboShield provides options for its Threat Assessment capability. The
customer may

• Choose or omit the Threat Determination service to identify a threat that could be an
air-breathing target (ABT) and/or a theater ballistic missile (TBM).

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

• Choose or omit, in addition to the Threat Determination service, a Threat Ranking
and/or a Threat Warning service.

Each instance of GloboShield will have its own system architecture that reflects the product
choices outlined above as well as many others, but in all cases one that is derived from the
architecture illustrated in Figure 3. Figure 4 shows four product architectures – that is,
architectures for four product instances of GloboShield.

Figure 4: GloboShield Product Architectures Derived from the
GloboShield Master Architecture

For the purposes of understanding how PLE and MBE can work together, it is not important
to understand the details of the “master” architecture nor the details of the derived
architectures in Figures 3 and 4. It is only important to understand that the product
architectures represent derivations of the master architecture, typically in a superset/subset
relationship. For example, a product architecture may omit some of the components that
populate the master architecture (and therefore the relationships or “connectors” that tie those
components to other components). This typically occurs when those components provide a
capability that has not been chosen for a product. A product architecture may vary from the
master in other ways; for example, a component may exist in both the master and a derived
product architecture, but that component will be of a different “flavor” in the product, or bind
certain choices about it that are available in its master-architecture analog.

MBE to Manage the Architecture
Figure 4 is a documentation-based representation of the difference between a master
architecture and product architectures that derive from it. In this world, viewgraphs are often
the communication medium – an old quip holds that the world’s most popular architecture
description language is PowerPoint – in which the notation is often informal at best.

To move from the documentation-centric realm into the model-based realm, these
architectural designs need to be captured in a more formal representation. Raytheon, like

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

many systems engineering organizations, uses the System Modeling Language (SysML)
[http://www.omg.org/spec/SysML/1.4/, retrieved October 2016] as its preferred language in
which to represent system architectures. The architectures in Figure 3 and 4 can be
represented in SysML. Raytheon uses Rhapsody from IBM Rational as the modeling tool
with which to capture SysML models. In alignment with MBE, these choices enable analysis
and derivation (for example, code generation) to be brought to bear, whereas any utilization
of the architectural information before was purely manual and fraught with error-prone and
labor-intensive work.

If this paper were only about MBE, we could end our story here, celebrating the benefits of
MBE for each of our products. There would be (in our case) not one but five models (the
master and the four derivatives). If models are good, then five models surely represent an
embarrassment of riches.

PLE to Manage the Variation
MBE, of course, is only the beginning of the story. GloboShield is not a plethora of separate
products. It is a product line, a single family of similar systems with variation among them.
At the very least, we want to reuse the parts that are common across the instances.

Reuse may come in the form of reusing systems, hardware, and/or software components
which includes all their assets (requirements, designs, test, etc.). Under a reuse paradigm,
usually each program develops an architecture and determines what they could reuse from
other programs. Many times, the architecture is captured using block diagrams in slideware.
Several programs in a family of similar programs will have very similar block diagrams but
have different names for the same subsystem or component. Trying to identify potential
reuse between a family of products becomes difficult and confusing, and we end up with the
O (N2) quagmire of Figure 2.

Indeed, when the systems engineering team first started to model the system architecture,
variation was managed using typical methods such as stereotyping, inheritance, plug and play
software components, and reusable interfaces. This approach worked up to a point for
structural views of the architecture but could not easily handle the behavioral views. Each
combination of variations could potentially produce different behavior scenarios. The only
way to manage the scenario variations were to create separate views for each behavioral
thread which became difficult to manage in the same model. There was no mechanism to
automatically filter out the parts of the behavior that did not apply to a particular product.
This led to creating different system models for each product that, in turn, had to be
maintained like a clone and own solution.

Therefore, instead of aiming for simple reuse from program to program, we want to treat our
architecture models in accordance with the PLE Factory model of Figure 1. There needs to
be an approach to capture and manage the variations present among the products.

Using the factory approach, the systems engineering team developed a superset view of the
architecture to capture those systems that would be variant. Figure 5 captures the variations
identified for the structure of the enterprise view. The gear icon on some of the blocks along
with the Variation Point stereotype denotes model elements that are variant – that is, that do
not appear in every single member of the product line.

In order to identify the variant features, a feature model was developed. Raytheon has chosen
the Gears PLE tool and framework from BigLever to serve as its feature modeling tool and
the PLE Configurator shown in Figure 1 to power the PLE Factory.

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

The feature model captures distinguishing characteristics that set products apart – that is, only
those features that represent variation are modeled. The feature model is a hierarchical
decision tree that identifies and defines opportunities for variation; making selections in such
a decision tree defines a particular product.

Figure 5: GloboShield Block Definition Diagram Superset with Variation

Figure 6 shows part of the GloboShield feature model from Gears. The Gears development
environment provides the ability to create feature models, define feature assertions
(dependencies/constraints between features), feature profiles (a set of choices made against a
feature model), identification of shared assets (such as an architectural model), and defined
configuration of products. The feature model is a hierarchical tree structure that represents
product portfolio options. It describes the variant features a customer may choose from for a
specific product. Features defined in the feature model can be capabilities (i.e., functional,
operational, presentation, implementation techniques, operating systems, and operating
platforms) that represent variation among products. Each leaf node of the tree represents a
customer feature option. Some options may be dependent on other options and need to be
included or cannot be combined with other options. These dependencies and constraints are
defined as assertions and are captured as rules.

Feature profiles are defined from the feature model by selecting the feature options that
define a specific product. Figure 7 shows a portion of a feature profile that chooses the
Threat Determination option for a GloboShield product instance.

Figure 8 shows a different feature profile that selects Threat Determination, Threat Warning,
and Threat Ranking for a different GloboShield product instance.

Feature choices must be mapped to the variation within shared assets, so that the configurator
can reflect the feature choice in the configuration of the shared asset. This is accomplished
by adding variation points to the assets.

bdd [Package] DesignSynthesisPkg [GloboShield IAMD Corp]

GloboShield_IAMD
«Block,Corporation»

GSIAMD_C2
«Block,ProductLine,BusinessUnit»

1

1

GSIAMD_Effectors
«Block,ProductLine,BusinessUnit»

1

1

GSIAMD_Sensors
«Block,ProductLine,BusinessUnit»

1

1

AOCComm
«Block,Subsystem»

ADOCComm
«Block,Subsystem»

EWR
«Block,System,VariationPoint»

1

1

LLRS
«Block,System,VariationPoint»

1

1

GSIAMD_MaintenanceAndLogisticsDepot
«Block,CrossProductTeam»

1

1

GroundBasedEffector
«Block,System,VariationPoint»

1

1

AirBasedEffector
«Block,System,VariationPoint»

1

1

ShipBasedEffector
«Block,System,VariationPoint»

1

1

ADOC
«Block,System»

AOC
«Block,System»

1 1

ThreatAssessmentSystem
«Block,Product,Subsystem»

1

1

1

1

1

1

1

1

EngagementManagementSystem
«Block,Product,Subsystem»

1

1

1

1 1

1

1

1

1

1

GSIAMD_Engineering
«Block,CrossProductTeam»

1

1

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

Figure 6: Feature Model for Threat Assessment (excerpt)

Figure 7: Feature Profile For Threat Determination (excerpt)
Figure 9 shows a variation point that has been added to the ThreatDetermination_COTS
block in Rhapsody. The variation point encapsulates that model element that is identified as
a variation point along with variation point logic. The variation point logic is written in a
special-purpose Gears logic language that maps to the feature declarations. The logic tells
Gears what feature choices or combination of feature choices will cause that block to be
included in the projection, or product-specific instantiation of this shared asset.

The Gears configurator takes a feature profile name as input and configures the shared assets
accordingly by exercising their variation points according to the feature choices in the profile.
The configurator instantiates the projection for each variation point the feature parameters

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

values in the profile. Actuating all the variation points in each shared asset configures the
complete instance of a product.

Figure 8: Feature Profile Selecting Threat Determination, Threat Warning, and Threat
Ranking (excerpt)

Figure 9: Rhapsody View of Gears Variation Points
In the Rhapsody model, when Gears produced the Threat Determination ABT product
configuration (Figures 10 and 11), the model elements with the gear icon are either
highlighted in yellow if included, or a red slash if excluded, from the projection. All other
model elements not tagged with variation points are common and will always be included in
the projection.

Figure 12 shows another SysML view in Rhapsody – an activity diagram – annotated with
variation points for Gears to configure. A single actuation step will produce a block diagram

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

and an activity diagram (and other diagrams we have not mentioned, for brevity) that are each
configured consistently with each other to represent the same product instance.

Figure 10: GloboShield Block Definition Diagram View After Actuation for the Threat
Determination ABT Product

Figure11: Threat Assessment IBD After Actuation for the
Threat Determination ABT Product

bdd [Package] DesignSynthesisPkg [GloboShield IAMD C orp]

GloboShield_IAMD
«Block,Corporation»

GSIAMD_C2
«Block,ProductLine,BusinessU nit»

1

1

GSIAMD_Effectors
«Block,ProductLine,BusinessU nit»

1

1

GSIAMD_Sensors
«Block,ProductLine,BusinessU nit»

1

1

AOCComm
«Block,Subsy stem»

ADOCComm
«Block,Subsy stem»

EWR
«Block,System,VariationPoint»

1

1

LLRS
«Block,System,VariationPoint»

1

1

GSIAMD_MaintenanceAndLogisticsDepot
«Block,C rossProductTeam»

1

1

GroundBasedEffector
«Block,System,VariationPoint»

1

1

A irBasedEffector
«Block,System,VariationPoint»

1

1

ShipBasedEffector
«Block,System,VariationPoint»

1

1

ADOC
«Block,Sy stem»

AOC
«Block,Sy stem»

1 1

ThreatAssessmentSystem
«Block,Product,Subsy stem»

1

1

1

1

1

1

1

1

EngagementManagementSystem
«Block,Product,Subsy stem»

1

1

1

1 1

1

1

1

1

1

GSIAMD_Engineering
«Block,C rossProductTeam»

1

1

ibd [Package] DesignSynthesisPkg
[ThreatAssessment]

ThreatDetermination_Service
«Block,Product,VariationPoint»

Core:int

interface_136
port_10

Interface_3port_5

Interface_83

pThreatRanking_Service

Interface_62pEWR

ThreatRanking_Service
«Block,Product,VariationPoint»

Interface_7port_6

Interface_82

pADOCCommander

Interface_83

pThreatDetermination_Service ThreatWarning_Service
«Block,Product,VariationPoint»

interface_134port_7

pFreedoniaAllies

pFreedoniaMilitaryHQ

pFreedoniaCivilHQ

pADOCCommander

TBM
«Block,VariationPoint»

pMoronicaLackeys

Interface_81
pEWR

EWR
«Block,System,VariationPoint»

Interface_81

pTBM

Interface_62pThreatDetermination_Service

ADOCCommander

«flow»

«flow»
ADOCCommander

ThreatDetermination_COTS
«Product,Block,VariationPoint»

Variation:int

Interface_3port_9

ThreatDetermination_NDI
«Block,Product,VariationPoint»

Variation:int

Interface_3port_3

ThreatDetermination_GSSpecial
«Block,Product,VariationPoint»

Variation:int

Interface_3port_3

ThreatRanking_COTS
«Block,Product,VariationPoint»

Interface_7port_0

ThreatRanking_NDI
«Block,Product,VariationPoint»

Interface_7port_0

ThreatRanking_GSSpecial
«Block,Product,VariationPoint»

Interface_7port_0

ThreatWarning_COTS
«Block,Product,VariationPoint»

interface_134port_0

ThreatWarning_NDI
«Block,Product,VariationPoint»

interface_134port_0

ThreatWarning_GSSpecial
«Block,VariationPoint»

interface_134port_0

ThreatDetermination_Contract
«Interface,VariationPoint»

Interface_3
port_4

Interface_3
port_3

Interface_3port_1

Interface_3port_0

ThreatRanking_Contract
«Interface,VariationPoint»

Interface_7

port_3

Interface_7

port_2

Interface_7

port_
1

Interface_7port_0

ThreatWarning_Contract
«Interface,VariationPoint»

interface_134port_3
interface_134

port_2
interface_134

port_1

interface_134port_0

LLRS
«Block,System,VariationPoint»

interface_136port_1

interface_135pABT

ABT
«Block,VariationPoint»

interface_135

pLLRS

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

Figure 12: Threat Assessment Activity Diagram After Actuation for the Threat
Determination ABT Product

Figure 13 shows the Rhapsody browser after actuation for the Threat Determination ABT
Product. The variation annotations shown within the Rhapsody browser are applied to blocks,
operations, ports and interfaces.

Figure 13: Rhapsody Browser After Actuation for the Threat Determination ABT Product

In order to auto-generate a view of the architecture that applies only to a specific instance of a
GloboShield product, the Rhapsody models can be actuated to a staging area. When
actuated to a staging area, Gears removes all non-selected variations along with all Gears

act [Package] DesignSynthesisPkg [IDThreat]

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

«Block» ThreatDetermination_GSSpecial

/* Gears
Marker: Do
Not Edit
[GUID
bb0f910e-d0
69-4714-9b4
a-c039116ac
d38] [] */

IDTBM
«V ariationPoint»

/* Gears
Marker: Do
Not Edit
[GUID
c3cd4e18-0e
79-4048-bdb
4-266ceaf149
f2] [] */

IDABT
«V ariationPoint»

«Block» ThreatDetermination_NDI

/* Gears
Marker: Do
Not Edit
[GUID
e0ecdf07-c74
c-4d2e-9c20-
da59f923cd6
3] [] */

IDTBM
«V ariationPoint»

«Block» ThreatDetermination_COTS

/* Gears Marker:
Do Not Edit
[GUID
50aa170c-df6f-46
c7-8e41-e00781f6
116b] [] */

IDABT
«V ariationPoint»

«Block » LLRS

/* Gears
Marker: Do Not
Edit [GUID
d2b9a4cf-dfc4-4
a23-b0dd-8bc2b
31e2c45] [] */

SenseABT
«V ariationPoint»

«Block » EWR

/* Gears Marker:
Do Not Edit
[GUID
c89d2a43-55d0-4
181-af5e-8ff2f320
db4d] [] */

SenseTBM
«V ariationPoint»

«Block » A BT

/* Gears Marker:
Do Not Edit
[GUID
5f9731f2-3105-44
cb-8344-b13a20c
4c362] [] */

EmitA BTSignature
«V ariationPoint»

«Block » TBM

/* Gears
Marker: Do Not
Edit [GUID
5475cc94-7ccc-
443c-86b5-4c17
258a3603] [] */

EmitTBMSignature
«V ariationPoint»

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

variation notation. From a staged actuated model, documentation can be generated using
Rational Publishing Engine to create product specific architecture description documents and
interface description documents. In addition, if the product line modeled the interfaces data,
Rhapsody can generate the specific product’s IDL for software. As an added benefit, the
staged behavior views provide and communicate model-based detailed product specific test
case scenarios that are used by the systems and software integration test teams.

Conclusions
Raytheon has moved from generating architecture documentation from a document-centered
approach to a model-based approach. Productivity gains resulted from using a model-based
tool for creating product line architecture through reusable components. However, using
model-based engineering alone did not relieve the problem of having to “clone and own” the
variant products. The master architecture provided a framework for reusability but required
the generation and maintenance of separate product architectures. This led to the approach of
combining a PLE Factory concept with the MBE approach, which obviated the need to
maintain separate models.

This paper has shown a simple and effective way to combine two powerful engineering
paradigms, MBE and PLE. The combination is fully supported by off-the-shelf tooling and
automation, all of which is in widespread use today.

The combined paradigm uses the PLE Factory concept of a shared asset superset with
variation points, automatically configured to produce product-specific instances.

For MBE, architectural models in Rhapsody are the shared asset we have focused on. (We
also use Gears to configure requirements, source code, and more, but this is beyond the scope
of this paper.) Variation points in Rhapsody models denote model elements (e.g., a block in
a block diagram) that should be included or omitted from a product instance. Thus, we have
cleanly transitioned from the documentation-based realm of Figures 3 and 4 to a
fully-automated model-based realm.

When our PLE factory, automated by Gears, produces a product-specific architectural model
in Rhapsody, we can then carry out all of our MBE-based analysis and downstream
transformations. The derivation of the architecture(s) of Figure 4 from the “master”
architecture of Figure 3 is now fully automated, happens in a few seconds, and is not prone to
the errors of manual derivation. Moreover, we have only the superset to store, maintain, and
update. The derived architectures are not maintained on their own, but merely re-generated
when the superset changes. Thus, we have cut the artifacts we need to manage and store by
80% (from 1+4 to 1).

Using a model based engineering approach to capture the superset architecture for a product
line provides the benefits of capturing the architecture information and design decisions in a
model repository as a single source of truth. Within the model, different views are created to
provide a stakeholder the information they are concerned with. In this way, the model
contains the master architectural components; the various views express the variant
architectural choices for each product.

Using the PLE factory approach, provides the benefit of auto-generating product specific
architecture models without resorting to clone and own techniques. In addition, product
architecture documentation, interface specifications, and IDL can be generated from the

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

staged product architectures and delivered to the end customer along with auto-generated
requirements specifications that reflect the same variations.

PLE and MBE have, on their own, each reached industrial levels of maturity, backed up by
solid and robust technologies and methodologies that work at large scales. We hope to have
shown that MBE and PLE together – Model-Based Product Line Engineering, if you will –
has now arrived on the scene fully formed and benefitting from the maturity of each of its
parents, and providing the benefits of both.

References
[1] Brownsword, L. & Clements, P. A Case Study in Successful Product Line

Development (CMU/SEI-96-TR-016, ADA315802). Pitts- burgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996.
http://www.sei.cmu.edu/publications/documents /96.reports/96.tr.016.html.

[2] Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J., Scharadin, R., Shepherd,
J., and Winkler, A., “Second Generation Product Line Engineering Takes Hold in the
DoD,” Crosstalk, The Journal of Defense Software Engineering, USAF Software
Technology Support Center, 2013, in publication.

[3] Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns,
Addison-Wesley, 2002.

[4] Cohn, M. Succeeding with Agile, Addison Wesley, 2009.

[5] Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing U.S. Army Return on
Investment Utilizing Software Product-Line Approach,” Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC), 2012.

[6] Flores, R., Krueger, C., Clements, P. “Mega-Scale Product Line Engineering at
General Motors,” Proceedings of the 2012 Software Product Line Conference
(SPLC), Salvador Brazil, August 2012.

[7] Gregg, S, Scharadin, R., Clements, P. “The More You Do, the More You Save: The
Superlinear Cost Avoidance Effect of Systems and Software Product Line
Engineering, Proceedings Software Product Line Conference 2015, Nashville, 2015.

[8] Gregg, S., Scharadin, R., LeGore, E., Clements, P. “Lessons from AEGIS:
Organizational and Governance Aspects of a Major Product Line in a Multi-Program
Environment,” Proceedings, Software Product Line Conference 2014, Florence, Italy,
2014.

[9] Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. “Feature-Oriented Domain
Analysis (FODA) Feasibility Study” (CMU/SEI-90-TR-021, ADA235785).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 1990.

[10] Krueger, C. and Clements, P. “Systems and Software Product Line Engineering,”
Encyclopedia of Software Engineering, Philip A. LaPlante ed., Taylor and Francis,
2013, in publication.

[11] Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco. Software Product Lines in
Action, Springer, 2007

This	document	does	not	contain	technology	or	Technical	Data	controlled	under	either	the	U.S.	International	Traffic	in	
Arms	Regulations	or	the	U.S.	Export	Administration	Regulations.	

[12] Rico, D. F., “What is the return of investment (ROI) of agile methods?”
http://www.afei.org/WorkingGroups/ADAPT/Documents/rico08a[1].pdf, 2008.

[13] Scaled Agile Framework, www.scaledagileframework.com

[14] Software Engineering Institute, “Benefits and Costs of a Product Line,”
http://www.sei.cmu.edu/productlines/frame_report/benefits.costs.htm

[15] Software Engineering Institute, “Catalog of Software Product Lines,”
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm

[16] SPLC Product Line Hall of Fame, http://splc.net/fame.html

[17] Wikipedia, “Scrum (software development),”
https://en.wikipedia.org/wiki/Scrum_(software_development)

Biography
Dr. Bobbi Young is a systems engineer and certified architect at Raytheon. She currently
leads an Internal Research and Development Project focusing on adoption of PLE across the
business. She is regarded throughout Raytheon as an expert in MBSE and co-chairs an
MBSE Technical Interchange Group. Bobbi is also a faculty member of Worcester
Polytechnic Institute as an MBSE instructor and has co-authored a book on object oriented
analysis and design. She is a US Navy Commander (ret).

Dr. Paul Clements is the Vice President of Customer Success at BigLever Software, Inc.,
where he works to spread the adoption of systems and software product line engineering. He
was previously at Carnegie Mellon’s Software Engineering Institute, where for 17 years he
worked in software product line engineering and software architecture documentation and
analysis. Clements is co-author of three practitioner-oriented books about software
architecture as well as the field’s leading text on software product line engineering.

