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Abstract. In product lines with many products and demanding production tempos, manual 
product derivation is simply not feasible, which leaves us with the option of automated 
product derivation. That is easily enough said, but what precisely is the role of that 
automation? While commercially available PLE product production tools are available 
(usually called configurators), they cannot by themselves provide a complete engineering 
solution to a product line organization. Instead, an ecosystem of tooling is required. This 
paper explores what capabilities a PLE tool needs to have, why other tools are necessary as 
part of a holistic PLE technology solution, and what roles that other tooling must play.  

Introduction 
Modern large-scale industrial systems and software product lines are continuing to emerge 
that render manual product production (sometimes called product derivation) strategies [4] 
ineffective. The number of products can be too large (a large automotive company might 
produce tens of thousands of variants in its product line, for example [9]) – or the tempo of 
product release can be too fast (a software-focused company like HomeAway might release 
products many times a week [15]), to allow for labor-intensive practices to turn product line 
shared assets into products.  If we accept that self-evident premise, then obviously we must 
turn to automated product derivation in this arena. 

But what technology or technologies are available and required to fulfill that need? The 
answer is more complex than simply running out to purchase your favorite product line 
engineering (PLE) tool. In fact, the technology or technologies that product companies 
already bring to bear on their products, whether developed as a product line or not, must be 
taken into consideration. So must technologies that help the product line as a whole evolve 
systematically and sustainably over time. These and other considerations lead us to realize 
that a PLE technology ecosystem is required for large-scale industrial strength product line 
development. 

This paper explores why ecosystems are needed and what the components a full-fledged PLE 
ecosystem might comprise. We conclude by offering observations on what these observations 
mean to technology providers who hope to succeed in the large-scale PLE arena, and PLE 
practitioners who are looking for a holistic technology solution to power their product line 
engineering efforts. 



 

Essentials of product line engineering (PLE) 
Systems and software product line engineering, abbreviated here as product line engineering 
(PLE), refers to the disciplined engineering of a portfolio of related products using a common 
set of shared assets and a common means of production.   

Products 
The products in the portfolio are described by the properties they have in common with each 
other and the variations that set them apart.  The products can comprise any combination of  

• software  
• systems in which software runs, or  
• non-software systems that have software-representable artifacts (such as engineering 

models or development plans) associated with them.   

Herein, when we refer to a product we usually mean not only the primary entity being built 
and delivered, but also all of the artifacts that are produced along with it.  Some of these 
support the engineering process (such as requirements, project plans, design modes, and test 
cases), while others are delivered alongside the thing being built (such as user manuals, 
shipping labels, and parts lists).   

Shared assets 
Shared assets are the “soft” artifacts associated with engineering lifecycle of the products, the 
building blocks of the products in the product line. In the early days of PLE this largely 
constituted software, but as PLE has matured the notion of shared assets has expanded to 
include a wide spectrum of engineering artifacts [16].  In fact, shared assets can be whatever 
artifacts are representable with software and either compose a product or support the 
engineering process to create a product.  These can include, but are not limited to the 
following: 

• requirements 
• design specifications 
• design models 
• source code 
• build files 
• test plans and test cases 
• user documentation 
• repair manuals and installation guides 
• project budgets, schedules, and work plans 
• product calibration and configuration files 
• data models and parts lists 

Means of production 
The means of production is the mechanism turns shared assets into configured, 
product-specific instances that, together, constitute the artifact set for one of the products in 
the product line.  Configuring the shared assets for each product in turn produces the entire 
set of products. 

The means of production can be manual, but for product lines of any size or frequency of 
change, manual production is impractical; some form of automation is required.    



 

Low-end automation might be a programming language’s macro processor combined with 
compiler flags and #ifdef statements to turn blocks of code on or off.   However, this scheme 
scales poorly, may not trace well across different kinds of artifacts, and in fact may not work 
for (for example) requirements or design models.  This leads to an ad hoc collection of 
techniques for expressing variation, each specialized to its own type of shared asset.   

At the high end of the spectrum are special-purpose PLE tools take a description of a product 
and automatically instantiate the shared assets to support the described product.  Examples of 
such tools include Gears [14], pure::variants [2], XVCL [12], Dopler [6], and more.   

It is at this end of the spectrum that our interest lies. 

Characteristics of automation-centric PLE  
McGregor [18] identifies five different kinds of automated approaches to product derivation, 
approaches that are differentiated by the way in which we tell the automation what product to 
build: 

• Specification approaches. Here, a specification of the desired product is provided to 
the automation. The specification may be a description of the product’s features, or 
the use cases that it satisfies, or some way of picking the product out of a domain of 
similar products. 

• Intelligent build. Here, the automation is a build tool such as ant [19]. The product 
engineer simply directs the automation, via a script, to assemble products from 
available building blocks.  

• Domain specific languages (DSLs) and product generation. In this approach, a 
programming language (one that includes abstractions with the expressiveness to 
capturing concepts in the products’ domain) is used to write programs that are then 
fed to automation (purpose-built for the DSL, one presumes) that “implements” the 
solution. 

Metamodeling, which is an approach used to create a DSL, and frame technology, a variant 
of metamodeling, round out the list. 

Thus, a common concept of automation-based PLE is a description of the desired product that 
is fed to the automation. 

Automation-centric PLE in practice 
One particular manifestation of automation-centric PLE appears in the literature (and in 
practice) under the name “Second Generation Product Line Engineering (2GPLE) [16]. It 
came about largely because of the availability of commercial industrial-strength automation 
tools called configurators in the early 2000s.  This is the model we will discuss in the 
following, which has quite a number of published case studies to recommend it 
[5][9][15][8][10]. 

Figure 1 illustrates the essence of 2GPLE with Gears [14] standing in as the configurator. 
This “factory’s” supply chain is at the left, in the form of shared assets that are configurable 
because they include variation points – places where the artifact needs to be different 
depending on what feature set we are asking it to support – shown by the gear symbols in the 
figure.  Variation points are expressed in terms of the features available in each of the 
products. A feature-based product specification at the top tells the configurator how to 



 

configure the assets coming in from the left. The resulting products, assembled from the 
configured assets, emerge on the right. This enables the rapid production of any variant of 
any of the assets for any of the products in the portfolio. Once this production line capability 
is established, products are instantiated – derived from the shared assets by the configurator – 
rather than manually created. 

 

 
Figure 1. A PLE factory showing shared assets (left) being configured by a 

configurator (in this case, Gears), informed by feature profiles (top) that describe the 
product.  

 

The 2GPLE approach has a number of important characteristics that distinguish it.  

Characteristic 1: Features express product differences across all phases of the 
product lifecycle.  A feature, to paraphrase [13], is a distinguishing characteristic of a 
product, usually visible to the customer or user of that product. An example is a 
function that one product can perform that others cannot. The concept of “feature” 
allows a consistent abstraction to be employed when making choices about a product, 
from conceptualization to deployment. Stakeholders throughout the entire product line 
environment are fluent in the language of features. Marketers sell features; testers test 
features; suppliers provide parts that realize features; software programmers 
implement features; requirements engineers specify features; and so forth. All of these 
roles are able to communicate meaningfully in this lingua franca, as opposed to the 
arcane languages of each one’s discipline. 

Feature declarations lay out the choices that are available to you. For example, when 
you buy a new car: Two door or four door? Sport package, luxury package, or 
economy package? Moon roof?  



 

Feature assertions describe constraints and dependencies among the features. For 
example, feature assertions could express the constraint that a feature (or combination 
of features), if chosen, either requires or excludes the presence of another feature (or 
combination of features). Feature assertions are a critical aspect of building feature 
models; they capture the knowledge necessary to prevent unacceptable products from 
being constructed. 

Feature profiles are used to reflect choices made from among the available features 
for the purpose of instantiating a product. A feature profile is associated with a 
subsystem or a product, and reflects the actual choices you make: Two door with 
sport package, but no moon roof; or four door with luxury package and moon roof. 
The values assigned in feature profiles must satisfy the constraints and dependencies 
expressed by the feature assertions.  

Characteristic 2: Shared assets from across the full lifecycle, with consistent 
variation management.  Shared assets come from all lifecycle phases (not just the 
software, which was the focus in early PLE).  

Shared assets in PLE are engineered to be shared across the product line.  Shared 
assets are designed with built-in variation points, which are places in the shared asset 
that change depending on the product in which the shared asset is used. Variation 
points use variation mechanisms [1] to impart product line diversity; these 
mechanisms include macro’s in code, substituting one variant of the artifact for 
another; runtime conditionals and configuration files; attributes and filters; model and 
text transformations; feature mappings, parameterization, and many more.    

Further, however, 2GPLE enforces consistent treatment of all shared assets under the 
production infrastructure. 

To see what this means, try to visualize the situation it without it.  Imagine that a 
requirements engineering team has embraced a PLE requirements management 
technique based on tagging requirements in a requirements database with attributes 
that differentiate feature variations in requirements. Further, the design team has 
adopted a Unified Modeling Language (UML) tool and has embraced inheritance as 
the mechanism for managing PLE design variations. The development team is using a 
FODA feature model drawn in a graphical editor, plus #ifdefs, build flags, and CM 
branches to manage implementation variations. Finally, the test team has adopted 
clone-and-own of test plan sections, stored in appropriately named file system 
directories to manage their PLE test plan variations. Now imagine what would be 
needed to create a complete PLE lifecycle solution that integrates into a larger 
business process model. How do the requirements database attributes and tagged 
requirements relate and trace to the subtypes and supertypes in the design models? 
How do these attributes and supertypes relate and trace to the #ifdef flags, CM 
branches, FODA features, and test case clone directories? Trying to translate between 
the different representations and characterizations of features and variations creates 
dissonance at the boundaries between stages in the life cycle.  

To resolve this quagmire, a key aspect of 2GPLE is not just inclusion of artifacts from 
all across the lifecycle, but consistent and traceable treatment of variation, using the 
same language (based on feature choices) to express variation points in every kind of 
shared asset. Figure 2 shows the classic V-model for systems and software 
engineering. Each phase is augmented by the addition of variation points (indicated 



 

by the gear symbol) to the artifacts native to that phase. A Bill-of-Features for a 
product corresponds to the feature selections within the feature profiles for that 
product.  

 

 
Figure 2: V-model for system engineering and PLE 

 

Characteristic 3: CM that maintains shared assets, not products or asset 
instantiations.  Under the 2GPLE discipline, the full superset of available PLE assets 
(and not the individual products or systems) are managed under configuration 
management (CM). A new version of a product is not derived from a previous version 
of the same product, but configured from the correct (possibly new) version shared 
assets themselves.  

Characteristic 4: Support for product lines across organizational boundaries. 
Organizations, even small ones, often have separate divisions that work to support 
their product line. Large organizations almost certainly do. It is impractical to expect 
everyone to work on the same feature model, the same set of shared assets, and so 
forth. Certainly having one global collection of feature declarations for an entire 
production line is impractical when features may number in the hundreds or even 
thousands. It makes much more sense to modularize the feature model in a way that 
corresponds to the organizational structure of the enterprise. This lets engineers work 
largely independently within the confines of their own organizational units and 
domain expertise. 

What must 2GPLE automation provide? 
To power the factory of Figure 1, the first capability the configurator must obviously provide 
is the ability to exercise variation points in shared assets according to a specification of the 
product (which, in the 2GPLE paradigm, comes in the form of feature profiles). 

Clearly there must also be tooling that supports the construction and management of feature 
models (including feature declarations, assertions, and profiles). 



 

In the 2GPLE realm, the tooling must assist in the construction of variation points – for 
instance, to provide a structured editor to help PLE engineers write feature expressions, as 
opposed to forcing them to write the expressions by hand. All of this pre-supposes a 
structured, learnable variation point language and a relatively simple menu of variation point 
mechanisms to invoke. 

It also needs to enforce the assertions it has captured – that is, report when a product is 
specified that violates one or more feature constraints. 

Finally, it must have a user interface that scales for work across organizations with thousands 
of engineers whose experience working with engineering tools (and many different tools 
among them) will likely vary greatly. 

Satisfying this list might be a tall order but configurators such as Gears combine all of these 
capabilities into a single tool today. 

If that is the case, then where is the PLE ecosystem on which this paper is predicated? The 
next two sections add requirements on the tooling that even a hypothetical PLE supertool 
could not meet. 

Letting users continue to use the engineering tools they’re used to  
In a PLE context, requirements engineers work on requirements, software engineers work on 
software, test engineers build test cases, assembly engineers build bills of materials and parts 
lists, tech writers write user manuals, technical managers build engineering plans, build 
engineers craft build scripts, and so forth. They do these things in the context of the entire 
product line and not just individual products, but by and large their jobs remain the same. 

Good luck to any PLE tool purveyor who comes into an organization and announces that, in 
order to use the PLE tool being proffered, everyone must drop the tools they are using to do 
their daily work and use the PLE tool instead. 

And yet, we want the requirements engineer, software engineer, test engineer, and the rest to 
put variation points into their artifacts, and we want that process to be assisted and facilitated 
by automation that will eventually exercise those variation points.  

This means we need way to support the specification and selection of variation in assets and 
artifacts from across the entire spectrum of the product life cycle – in, for example, DOORS 
requirements modules, Word documents and Excel spreadsheets, build files for Make or Ant, 
Rhapsody UML models, and many more. 

But off-the-shelf lifecycle management tools do not know about PLE or variation points or 
feature models or have interfaces that allow for variation points to be exercised based on 
feature choices made in another tool. And no PLE tool vendor is going to replicate the 
interface and functionality of, for example, IBM Rational’s DOORS requirements tool in 
their PLE tool (to name but one example of a requirements engineering tool in but one life 
cycle area), let alone all the other possibilities. 

The solution, of course, is for the PLE tool to interface with the life cycle tools to support 
variation. There are fundamentally three ways to achieve variation in an asset, depending on 
what you know about the digital representation of the associated artifact: 

• The representation of the artifact is proprietary and closed, or editors for it are not 
available or are impractical. For example, if our products include a picture that is 



 

different from product to product, some of our artifacts may be JPG files. Our only 
avenue to achieve variation in this case is to have the variation point can simply 
choose from a selection of alternative variants, using each one as is, as opposed to 
trying to change the picture by editing the image, pixel by pixel, stored in a 
one-size-fits-all superset picture file. 

• The representation of the artifact is “open,” so that you can change it using an 
available open market tool. For example, artifacts stored as simple text files may be 
transformed (during the exercising of their variation points) by simple word or line 
substitution. Artifacts that are Microsoft Word documents stored in Office Open XML 
format can be transformed by third party tools.  

• The representation of the artifact is proprietary, but the owning organization offers a 
business relationship to allow your PLE tool to edit their artifacts. Suppose your 
requirements are stored in DOORS, using hundreds and hundreds of DOORS 
requirements objects. The representation of those objects is proprietary, but using the 
strategy in the first bullet is out of the question: Swapping in and out whole 
requirements documents that each differs by just a little bit is untenable. It would be 
much better to make an arrangement with the vendor (IBM Rational in this case) so 
that you can write a piece of software that can insert and operate on variation points 
throughout the DOORS representation of a body of requirements. 

This adds another requirement to the product line engineering automation engine that does 
not come immediately to mind: does its proprietor have the necessary business relationships 
to support variation in the third category? This property is essential for the property of 
2GPLE we described earlier: support for variation in shared assets originating from across the 
entire life cycle. 

And now we have an ecosystem: The PLE automation must partner with (interface with) the 
vendors (and their tools) that provide the functionality that our PLE engineers use in their 
day-to-day jobs. 

Ecosystems 

An ecosystem is “a system, or a group of interconnected elements, formed by the interaction 
of a community of organisms with their environment” or, perhaps more helpfully to our 
context, “any system or network of interconnecting and interacting parts, as in a business” 
[7]. 

Much has been written about software ecosystems [3], which are ecosystems in which the 
elements are software or software-related entities, such as the organizations involved in the 
production of software.  

McGregor and Monteith point out that ecosystems are believed to contain the necessary 
elements to sustain life of the ecosystem’s elements [17]. If the elements have value to us, 
then the ecosystem also has value to us, and is worth studying to understand how it sustains 
that life and (where we have control over it) what we can do to enhance that sustainment. 

In this paper, we use the term ecosystem in reference to tools, technologies, products, and 
suppliers of all of those that, together, provide an industrial-strength PLE technology 
solution. 



 

There’s still one final piece to add to our ecosystem picture:  It has to be able to handle the 
three dimensions of PLE. 

Ecosystem support for three dimensions of PLE 
Organizations building a product line have to deal with three concerns, which are illustrated 
in Figure 3. They have to: 

1. Manage the plurality of products (outward-pointing axis). The 2GPLE paradigm 
discussed earlier, and the automation-centric PLE approach for which 2GPLE is a 
specific instance, is aimed largely at this dimension. This is the realm of mainstream 
PLE tools such as the ones mentioned previously. 

 

 
Figure 3 Three dimensions of product line engineering.  

 
2. Evolve the portfolio over time (horizontal axis). The Multi-baseline axis of Figure 3 

deals with the usual temporal concerns of product engineering, such as version, 
configuration and change management. Configuration management (CM) systems are 
brought to bear to track the evolution of shared assets over time. Just as no PLE tool is 
going to subsume all requirements engineering or testing tools, no PLE tool is going 
subsume all CM system capabilities. At best, they will be compatible with general 
CM systems or even be agnostic to the CM systems in use by simply working on files 
checked out into workspaces. But to handle the critical need to manage evolution, we 
now add CM systems to our PLE ecosystem. 

3. Manage the shared assets and the products to which they contribute across lifecycle 
phases or disciplines (vertical axis). The ecosystem we discussed in the previous 
section is aimed largely at this dimension. However, in a true systems engineering 
environment, traceability across the lifecycle artifacts (e.g., from requirements to code 
to tests, or from design models to parts list) plays a critical role.  That traceability 
must be maintained as the product line and its shared assets evolve over time, and 
must persist when shared assets’ variation points are exercised to derive products. 



 

 
Figure 4. Federated global configuration management 

 

Figure 4 illustrates the last point.  It shows four kinds of shared assets plus the product line’s 
feature model, each possibly stored in separate physical repositories (e.g., a DOORS database, 
a code library, etc.), all evolving over time (left to right).  The red “zigzag” line connects 
versions of shared assets and the feature model that correspond to a consistent build set from 
which products are derived at a point in time.  The zigzag line is called a “temporal context.”  
To build a product, we check out the right versions (identified by the zigzag) of the shared 
assets and feature model, and use our configurator to derive the desired product.  The result is 
a set of asset instances, as usual, with their trace links still in place, to produce a consistently 
linked product. 

The final piece of technology to add to our PLE ecosystem is the technology to manage this 
traceability over time and across engineering artifacts.  This technology need is being 
addressed by technology vendors. IBM’s Global Configuration Management solution is a 
leading example: 

“A global configuration assembles other configurations within and across 
applications. The other configurations come from contributing applications, such as 
Rational Team Concert™, Rational® Quality Manager, Rational Design Manager, 
Rational DOORS® Next Generation, or other global configurations. 

“Global configurations assemble all the relevant artifacts (requirements, design 
models, test plans, source code, other global configurations) for a specific component 
release or product version. Use the assembled version to work in parallel on multiple 
development streams, re-create a development environment from the past, or build a 
hierarchical component structure of a system that you are developing, while managing 
versions and variants across product lines.” [11] 



 

Summary 
This paper has tried to show that a holistic solution to product line engineering in the large 
involves, by necessity, an ecosystem of collaborating technologies. The three dimensions of 
PLE – multi-product, multi-phase, and multi-baseline – each bring players and their 
technologies into the PLE ecosystem. The multi-product dimension is the domain of the PLE 
tools that may first to mind when designing an automated PLE solution. The multi-phase 
dimension requires us to consider life cycle tools such as modeling or testing tools, as well as 
consider cross-life-cycle traceability. And the multi-baseline dimension adds change and 
configuration management technologies to the ecosystem. 

PLE is the one engineering realm that brings together all of these communities.  

For those in the market for a PLE technical solution, they must keep in mind the 
multi-product, multi-phase, multi-baseline ecosystems whose inter-operation is the key to 
required functionality over time and across their product domain. 

On the other side of the coin, technology providers who want to succeed in the PLE arena 
must also take into account the PLE ecosystems in which they are going to serve, and make 
their technologies open enough to be compatible with the other automation with which they 
must cooperate, and be open to business relationships with other technology providers in the 
ecosystem. It is a daunting challenge, but one that is being met by the engineering 
community. 
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