
Feature-based Product Line

Engineering lets you build

your product line portfolio as

a single production system

rather than a multitude of

individual products.

Feature-based Systems and Software
Product Line Engineering: A Primer

INCOSE’s Product Line Engineering International Working Group spearheaded

the ISO standard 26580 on Feature-based Product Line Engineering. This

primer serves as an introductory companion to that standard.

Why Product Line Engineering?

Product Line Engineering (PLE) has long been known for delivering significant
improvements in time to market, quality, and cost of systems.* Feature-based
Product Line Engineering is a proven, well-defined, repeatable, automation-
centric approach to PLE that is now delivering even greater improvements
throughout some of the most challenging engineering industries.

“The Department [of Defense] is transitioning to a culture of performance
and affordability that operates at the speed of relevance… We will prioritize
speed of delivery, continuous adaptation, and frequent modular upgrades.”
— James Mattis, U.S. Secretary of Defense, April 2018
https://www.defense.gov/News/Article/Article/1503359/mattis-asks-house-committee-to-build-on-recent-dod-successes/

Virtually all systems and software engineering is performed in the
context of a product line. Hardly anyone builds just one edition, just
one flavor, of anything. Product lines are found in every industry,
including aerospace, defense, automotive, medical, consumer
electronics, computer systems, energy, telecommunications,
semiconductor fabrication, software applications, e-commerce, and
industrial automation. Product lines occur under every business model,
including retail, government contracting, OEM, business-to-business,
value-added reselling, and custom development.

As businesses everywhere strive to achieve competitive advantage
and greater profitability, the need to elevate systems engineering to
system family engineering is universal.

There are constant pressures
to decrease cost and time to
market. The exponentially growing
complexity of product line portfolios
and how they are created and
produced are pushing organizations
to the edge of their capability. As
the mundane tasks of managing this
complexity increasingly consume
engineering teams, they lose the
opportunity to create and fully
leverage new product innovations.

Even in the world of Aerospace and Defense, gone are the days when
government customers are satisfied with the traditional “clone and
own” reuse approaches where each product variant is custom fit to
a customer’s needs. This traditional reuse method does not give rise
to agile and faster deliveries. Customers are demanding frequent and
modular upgrades, lower development costs, and faster deliveries to
keep pace with their competition and changing operational contexts.

* Linden et al. Software Product Lines in Action: The Best Industrial Practice in Product Line
Engineering. 2010

This primer provides a
starting point to learn
about this powerful
approach. It offers a
brief introduction to PLE,
explains how it works,
and provides sources of
information to learn more.

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

FEATURE CATALOGUE BILL-OF-FEATURES PORTFOLIO

PLE
FACTORY

CONFIGURATOR

PRODUCT ASSET INSTANCES
SHARED ASSET SUPERSETS

Organizations utilizing Feature-based PLE adopt
a factory approach to building their products. The
figure above illustrates the important concepts
of a Feature-based PLE Factory in operation, as
defined in the ISO standard.

• Shared assets are artifacts that support the
creation, design, implementation, deployment,
and operation of products. They can be
represented digitally and configured, and are
shared across the product line.

Each shared asset is a superset that contains
variation points, which are pieces of content that
should be included in or omitted from a product
based on the features selected for that product.

• The Feature Catalogue captures the features
that are available for each product to select. A
feature is a distinguishing characteristic that
describes how the members of the product line
differ from each other. This provides a common
language and definition of the product line’s
scope of variation for everyone throughout the
organization.

• The features selected for each product in the
product line are specified in the Bill-of-Features
for that product.

• The PLE Factory Configurator is an automated
software tool that applies a Bill-of-Features
to all of the shared assets. It evaluates each
variation point to determine if that variation
point’s content should be included or not.

• The PLE Factory produces as output Product
Asset Instances, each one containing only
the shared asset content suited for one of
the products in the product line. Together,
they constitute the artifact set for one of the
products in the product line.

Engineers now work on the shared asset
supersets, and the Feature Catalogue, and the
Bills-of-Features. Change and evolution are
handled systematically through well-defined
governance procedures.

Once the PLE Factory is established, engineering
assets for products are instantiated rather than
manually created.

Feature-based PLE transforms the task of
engineering a plethora of products into the much
more efficient task of producing a single system:
The PLE Factory itself.

The solution:
The Feature-based PLE Factory

A shared asset used in the product line takes the
form of a superset, meaning any asset content
used in any product is included. There is no
duplication or replication of asset content at all.
This elimination of duplication is where Feature-
based PLE derives its savings by eliminating work
across duplicated assets.

The shared asset supersets contain variation
points, which are places in the asset that denote
content that is configured according to the feature
choices of the product being built. A statement of
the product’s distinguishing characteristics — its
features — is applied to “exercise” these variation
points (that is, cause the content associated with
each variation point to be configured to meet the
needs of the product).

Configuration options typically include selection
or omission of the content; selection from among
mutually exclusive content alternatives; generation
of content from feature specifications; and
feature-based transformation of content from one
form into another.

Requirements

Perhaps one of the easiest shared assets to
understand is requirements. A superset of
requirements combines individual product
requirements to establish the product line
requirements. Variation points achieve inclusion
and omission, define mutual exclusion, and
transform requirement wording in the product
specification – all based on feature selections.
Requirement transformation can replace
constants, units, or other text with values that are
derived from the feature model. Requirements
that have no variation are part of every product.

Models

When models are used in product development,
they can be developed as supersets and
instrumented with variation points for the product
line. For example, system design or architecture
models using SysML or UML can be instrumented
through variation points, which apply to structural
elements such as processes, objects, classes,
states, use-cases, packages, and others.

Electrical and Mechanical Designs

Shared assets for Electronic Design Automation
(EDA), and Mechanical Design Automation
(MDA), and Computer-aided Design (CAD) for
electronic, mechanical, mechatronic, and cyber-
physical systems take the form of supersets of
parts, properties, and relationships in Bills of
Materials (BoM), assemblies, subsystems, circuit
boards, wiring harnesses and more in EDA, MDA,
and CAD models. Variation points instrument
optional, mutually exclusive, and varying content
in the models.

Source Code

In software systems, shared assets can include
the source code, the models used to generate the
source code, build files, and automated unit tests.
Source code can be configured in several ways
including individual blocks of code, files, or build
files. A modular software architecture may assist
greatly with the feature instrumentation but is
not necessarily required. Features might align
closely with the system’s software, electrical,
and/or mechanical modularity, or they might
be cross-cutting where a feature affects several
different modules.

Shared assets are the “soft” artifacts associated with the engineering life

cycle of the products. A shared asset can be any artifact representable

digitally: requirements, design models, source code, test cases, BoMs, wiring

diagrams, documents, and more. They either compose a product or support

the engineering process to create a product.

Shared assets:
A key concept of Feature-based PLE

Test Plans and Test Cases

For all types of systems there should be validation
and verification artifacts that include test plans
and test cases. These may use automated or
manual techniques, but in either case should be
supersets instrumented with variation points
along with the other shared assets in the product
line. Eliminating sources
of unnecessary testing
is often one of the
first visible benefits of
PLE. Furthermore, it is
possible to streamline or
even eliminate redundant
testing of common
capability across the
product line.

Others

There are many other
types of shared assets
that might serve in a
product line, such as
product budgets or cost
models, schedules and
work plans, user manuals
and installation guides,
process documentation,
marketing brochures,
wiring diagrams,
simulation models,
engineering drawings,
product descriptions,
and contract proposals.
These assets in their
simplest form may be documents, spreadsheets,
or presentations, but more complex or
customized systems may be used to formalize
them. In any case, these assets can be integrated
into the PLE factory.

A Consistent Approach to Variation

Imagine that a requirements engineering team
has embraced a variation management technique
based on tagging requirements in a requirements
database with attributes that differentiate
feature variations in requirements. Further, the
design team has adopted a SysML tool and
has embraced inheritance as the mechanism

for managing design
variations.

The software development
team is using an informal
feature model drawn in
a graphical editor, plus
macro directives, build
flags, and configuration
management branches to
manage implementation
variations. Finally, the
test team has adopted
clone-and-own of test
plan sections, stored in
appropriately named file
system directories to
manage their PLE test plan
variations.

Now imagine what would
be needed to create a
complete PLE life cycle
solution that integrates
into a larger business
process model. How do
the requirements database
attributes and tagged
requirements relate and

trace to the subtypes and supertypes in the
design models? How do these attributes and
supertypes relate and trace to the macro flags, CM
branches, and test case clone directories? Trying
to translate and synchronize among the different
representations and characterizations of features
and variations creates dissonance and chaos at
the boundaries between stages in the life cycle.

To resolve the quagmire brought about by different disciplines each using its
own approach to variation, a key aspect of Feature-based PLE is consistent
and traceable treatment of variation across all shared asset types. Feature
choices are the basis of a common language of variation across all disciplines
and at all levels of the organization.

The economics of Feature-based PLE
Organizations that adopt PLE as a key business strategy consistently garner

significant competitive advantage in the form of more wins, more innovative and

higher quality systems and products, faster engineering and business velocity, and

higher revenue and profits.

Feature-based

Product Line

Engineering

eliminates

duplication in

artifacts and

replication of

work, resulting in

the leanest, most

efficient engineering

effort possible.

As an organization

carries out its daily

engineering work,

that work can be

characterized by

how many products

in the organization’s

portfolio each piece

of work affects.

Capturing a new requirement, repairing a defect

in a piece of software source code, writing a more

comprehensive test case, adding a new piece

of hardware to the Bill of Materials, altering a

design model: Each of these tasks, and more, can

be characterized by how many products in the

portfolio it affects.

Suppose a task affects four products. In a

product-centric environment, each product’s team

will apply that task. Under Feature-Based PLE, if

the organization undertakes a task again affecting,

say, four products, that task is carried out once,

inside the factory. The task will involve changing

or adding to the shared asset supersets, or the

Feature Catalogue, or the Bills-of-Features for the

products. Then, the configurator is used to apply

the work to each product that needs it.

In the figure above, each bar represents work that

applies to a certain number of products. The blue

segment of each bar measures the engineering

effort of a task. No matter how many products

benefit from the task, the task is only done

once, consuming one “unit” of effort. The gold

segment of each bar measures the engineering

effort avoided through the automation of the

configurator. The small green segments represent

the cost of applying Feature-based PLE: building

the Feature Catalogue, the shared assets with

variation points, etc.

The engineers carrying out the task in our example

have done the work of a team four times their

size under the old approach. They can claim with

absolute justification that they are four times as

productive as their pre-PLE-factory counterparts.

Feature-based PLE for the enterprise:
PLE from the break room to the boardroom

PLE earned its wings, and its ongoing reputation
for substantial savings, in engineering. However,
Feature-based PLE should not be sequestered
in just the engineering sphere. Organizations
expend enormous amounts of time and effort
dealing with product feature diversity to manage
manufacturing and supply chains, certification and
compliance documentation, product marketing
and product portfolio planning, e-commerce web
system deployments, sales automation, training,
support, service, maintenance, disposal, and more.
Feature-based PLE, with its central paradigm of
feature selections driving variation realization,
works not only in organizations’ engineering arms,
but in their operations arms as well.

In many companies, the marketing, capture
of opportunities, design, development, and
delivery of products is the output of different
teams who work in silos and follow different
processes. This often leads to a misalignment
between the benefits that are actually obtained
and the business strategy of the company (which
translates into lower profits), and between the
delivered product and the services the product is
supposed to provide (which usually translates into
customer dissatisfaction).

To avoid these problems, alignment and
collaboration among many functions in the
organization is crucial: from strategy functions to
customer-facing functions, program management
functions, technical functions and industrial
functions. In other words, all roles — marketing,
sales, bid teams, project management, systems
engineering, product policy, domain and
specialty engineering, as well as procurement,
manufacturing and installations — must agree
upon, share, promote, and comply to the same
vision of the product line scope. In all of these
areas, features can formalize the product line’s
domain of variability.

To the extent it is adopted throughout an
organization, Feature-based PLE provides
the opportunity to create that alignment and
collaboration. Its central concept of feature
powers diversity management at all levels, from
the most minute and mundane to the most
strategic and company-defining. Decision-makers
can use features to make strategic decisions about
portfolio management, entering new markets,
pricing, and more, and those feature decisions can
flow seamlessly down through product realization.

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

EntryControl

Indicator Lockout AutoLock

Physical LED Screen CenterConsole Speed Gear

Park Neutral Drive

FEATURE CATALOGUE BILL-OF-FEATURES PORTFOLIO

PLE
FACTORY

CONFIGURATOR

PRODUCT ASSET INSTANCES
SHARED ASSET SUPERSETS

Tools are easy. People are hard. The hardest obstacle to overcome when
adopting Feature-based PLE is not technological, but cultural. Fortunately,
the high ROI on PLE makes the organizational change pill easier to swallow.

Organizational PLE adoption

Effectively adopting Feature-based PLE involves much more than just installing
a tool to manage the Feature Catalogue and configure products. Leadership
commitment — not just tacit approval — is a critical ingredient for success.

Feature-based PLE involves a change in mindset,

from product-centric thinking to product line

thinking, as well as an organizational change: to

create, staff, and operate the PLE Factory. While it

in no way fundamentally changes the engineering

processes in an organization, it does extend them

in specific ways.

For example, requirements engineers will continue

to work on requirements, as always — except now

they will work with a superset and create variation

points. The same applies for software engineers,

test engineers, technical writers, analysts,

architects who build design models, and so on.

Governance is key. Change control boards

continue to function as before, but changes now

involve shared asset supersets and the feature

catalogue — and they are reviewed and vetted

from the perspective of the entire product line.

These and other changes must be introduced into

the organization’s culture, and the organization’s

natural tendency to continue working as before

must be overcome.

As a result, tenets from the organizational change

community* are appropriate and helpful in a PLE

adoption. Among other things, that community

teaches us that:

• Strong, effective, and repeated communication
throughout the organization of the importance
and (especially) the urgency behind the
adoption of PLE is essential.

• An incremental, purposeful, goal-oriented,
step-by-step adoption plan is necessary, to
ensure that the organization’s transition to PLE
happens in a gradual, manageable fashion.
Each increment should include a short-term
win, an improvement brought about by
PLE, that can be advertised and celebrated,
increasing the momentum of the adoption.

* For example, see Kotter, J. P. Leading Change.
Boston: Harvard Business School Press, 1996.

Feature-based PLE in practice

Feature-based PLE is currently in use in
organizations of all sizes and across a wide range
of industry sectors. Examples include:

• A global aerospace and security firm providing
the US Navy with a critical strategic defense
system is saving tens of millions of dollars
every year, equal to the cost of their entire
engineering staff.

• A leading aviation supplier is producing
certification packages for their safety-critical
flight products eight times faster than before.

• A major network storage company is enjoying
300% to 500% improvements in scalability, time
to market, and product quality.

• A global aerospace and defense company has
saved more than $800 million over a twelve-
year period, while increasing the productivity of
their engineers to 280% of previous levels.

• One of the world’s largest automotive
manufacturers has calculated cost savings of
tens to a hundred million dollars per year, from
configuring just one type of shared asset.

Published case studies include:
1. Wozniak, L., Paul Clements. “How Automotive

Engineering Is Taking Product Line Engineering to
the Extreme.” In Proceedings of the 19th International
Conference on Software Product Lines, Nashville, 2015.
327-336. New York: ACM.

2. Chalé Góngora, H.G. and Greugny, F. 2017. ”Where the
Big Bucks (will) Come from — Implementing Product
Line Engineering for Railway Rolling Stock.” INCOSE
INSIGHT Practitioners Magazine 22, no. 2 (2019), 15-24.

3. Clements, P., Susan Gregg, Charles Krueger, Jeremy
Lanman, Jorge Rivera, Rick Scharadin James Shepherd,
Andrew Winkler. 2014. “Second Generation Product Line
Engineering Takes Hold in the DoD,” Crosstalk, The
Journal of Defense Software Engineering, Jan/Feb
(2014). 12-18.

4. Gregg, Susan P., Rick Scharadin, and Paul Clements.
2015. ”The More You Do, the More You Save.” In
Proceedings of the 19th International Conference on
Software Product Lines, Nashville, 2015. 303-310. New
York: ACM.

5. Lanman, J., Brian Kemper, Jorge Rivera, Charles
Krueger. 2011. “Employing the Second Generation
Software Product-line for Live Training Transformation.”
In Proceedings of Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC) 2011.
accessed May 2, 2019, http://www.iitsecdocs.com.

Signs you’re not practicing Feature-based PLE

You’re not practicing Feature-based PLE if:

• You don’t have a Feature Catalogue, explicitly
owned and managed, and under revision
control. Different functions and factions in your
organization have diverging opinions on what
the product line is and is not.

• You aren’t using a feature-based configurator
tool that configures your engineering artifacts.
You’re creating asset instances by hand, or by
building and maintaining ad hoc scripts.

• You aren’t using a consistent variation
management approach, based on features,
across your engineering artifacts.

• Products are not defined in terms of features.

• You are permitting, either explicitly or through
casual process enforcement, clone-and-own
practices, increasing your technical debt and
burdening the organization with repetitive
work.

• Products in your product line have their own
development teams. The PLE Factory and
product development teams are fighting for
funding.

• Your product roadmaps and investment plans
are hampered by technical decisions taken
unilaterally by customer project teams.

• Engineers are applying manual changes to
multiple copies, not supersets.

• You have no PLE-based governance structures
in place.

• Your customers are dictating changes to
products that bypass the PLE change control
authority and governance structures.

• Your development teams hesitate to perform
modifications because they are tangled up in a
branching misery of product versions.

Additional resources:
1. ISO/IEC 26580 Software and systems engineering -

-Methods and tools for the feature-based approach to
software and systems product line engineering.

2. Beuche, D. 2008. “Modeling and building software product
lines with pure::variants.” In Proceedings of the 15th
International Software Product Line Conference, Limerick,
Ireland, Sept 08–12, 2008, 358-367. New York: ACM.

3. Gregg, S., et al. 2016. “The Best of Both Worlds: Agile
Development Meets Product Line Engineering at Lockheed
Martin,” INCOSE International Symposium, 26, no. 1 (2016);
951-965.

4. Gregg, S., et al. 2014. “Lessons from AEGIS: Organizational
and Governance Aspects of a Major Product Line in a
Multi-Program Environment.” In Proceedings of the 18th
International Software Product Line Conference, Florence,
Italy, 2014, 264-273. New York: ACM.

5. Krueger, C., et al. 2017. “An Enterprise Feature Ontology
for Feature-Based Product Line Engineering,” INCOSE
International Symposium, 27, no. 1 (2017); 951-965.

6. Flores, R., et al. 2017. “Product Line Engineering Meets
Model Based Engineering in the Defense and Automotive
Industries.” In Proceedings of the 21st Software Product
Line Conference, Seville, September 25-29, 2017, 175-179,

New York: ACM.

Feature-based Systems and Software Product Line
Engineering: A Primer is offered as a COMMUNITY
SERVICE from the International Council on
Systems Engineering (INCOSE). INCOSE’s
intention is to introduce and explain the ISO
standard 26580 on Feature-based Product Line
Engineering to the world’s systems engineering
community.

We encourage the document’s widest use,
including reproductions, translations, adaptations/
derivatives with only three restrictions:

1. Permission for use of images, unless indicated
as in the Public Domain, must be acquired for
derivative works. Please contact INCOSE for
Image contact information.

2. Please mark your material: derived from
Feature-based Systems and Software Product
Line Engineering: A Primer © 2023 by INCOSE.

3. Commercial uses of this document require
INCOSE’s prior approval.

In view of the minimal restrictions for any use of
this Primer, please send an electronic information
copy of any document created with or from this
Primer to our INCOSE Administration Office at
info@incose.org

